Skip to main content

Advertisement

Log in

ILEI drives epithelial to mesenchymal transition and metastatic progression in the lung cancer cell line A549

  • Research Article
  • Published:
Tumor Biology

Abstract

Transforming growth factor beta (TGF-β) induces epithelial–mesenchymal transition (EMT) accompanied by cellular differentiation and migration. Despite extensive transcriptomic profiling, identification of TGF-β-inducible, EMT-specific genes during metastatic progression of lung cancer remains elusive. Here, we functionally validate a previously described post-transcriptional pathway by which TGF-β modulates expression of interleukin-like EMT inducer (ILEI), and EMT itself. We show that poly r(C)-binding protein 1 (PCBP1) binds ILEI transcript and repress its translation. TGF-β activation leads to phosphorylation at serine-43 of PCBP1 by protein kinase Bβ/Akt2, inducing its release from the ILEI transcript and translational activation. Modulation of hnRNP E1 expression modification altered TGF-β-mediated reversal of translational silencing of ILEI transcripts and EMT. Furthermore, ILEI could induce, as well as maintain, CD24lowCD44high subpopulation in A549 cells treated with TGF-β, which might explain its capability to induce metastatic progression. These results thus validate the existence of an evolutionary conserved TGF-β-inducible post-transcriptional regulon that controls EMT and subsequent metastatic progression of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Cancer Society. Global cancer facts and figures. 2nd ed. 2008. p15. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-027766.pdf. Accessed 10 Sep 2012.

  2. World Health Organization. Cancer fact sheet. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 10 Sep 2012.

  3. Van ZN. Neoadjuvant strategies for non-small cell lung cancer. Lung Cancer. 2001;34:s145–50.

    Article  Google Scholar 

  4. Xiao DK, He JX. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2:154–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  6. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol. 2010;12:286–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial–mesenchymal transition. Cancer Cell. 2009;15:402–15.

    Article  CAS  PubMed  Google Scholar 

  9. Warzecha CC, Shen S, Xing Y, Carstens RP. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol. 2009;6:546–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hussey GS, Chaudhury A, Dawson AE, Lindner DJ, Knudsen CR, Wilce MC, et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol Cell. 2011;41:419–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Petz M, Kozina D, Huber H, Siwiec T, Seipelt J, Sommergruber W, et al. The leader region of Laminin B1 mRNA confers cap-independent translation. Nucleic Acids Res. 2007;35:2473–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Waerner T, Alacakaptan M, Tamir I, Oberauer R, Gal A, Brabletz T, et al. ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell. 2006;10:227–39.

    Article  CAS  PubMed  Google Scholar 

  13. Gregory PA, Bert AG, Paterson EL, Barry SC, Tyskin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  14. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    Article  CAS  PubMed  Google Scholar 

  15. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  Google Scholar 

  16. Wu X, Piper-Hunter MG, Crawford M, Nuovo GJ, Marsh CB, Otterson GA, et al. MicroRNAs in the pathogenesis of Lung Cancer. J Thorac Oncol. 2009;4:1028–34.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hussey GS, Link LA, Brown AS, Howley BV, Chaudhury A, Howe PH. Establishment of a TGF-β-induced post-transcriptional EMT gene signature. PLoS ONE. 2012;7:e52624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wildey GM, Patil S, Howe PH. Smad3 potentiates transforming growth factor β (TGF-β)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J Biol Chem. 2003;278:18069–77.

    Article  CAS  PubMed  Google Scholar 

  19. Hocevar BA, Brown TL, Howe PH. TGFβ induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18:1345–56.

    Article  CAS  PubMed  Google Scholar 

  20. Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 2005;65:9455–62.

    Article  CAS  PubMed  Google Scholar 

  22. Tauler J, Zudaire E, Liu H, Shih J, Mulshine JL. hnRNP A2/B1 modulates epithelial–mesenchymal transition in lung cancer cell lines. Cancer Res. 2010;70:7137–47.

    Article  CAS  PubMed  Google Scholar 

  23. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  24. Behbod F, Rosen JM. Will cancer stem cells provide new therapeutic targets? Carcinogenesis. 2005;26:703–11.

    Article  CAS  PubMed  Google Scholar 

  25. Dean M, Fojo T, Bates S. Tumor stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Additional information

Qi Song and Wei Sheng are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q., Sheng, W., Zhang, X. et al. ILEI drives epithelial to mesenchymal transition and metastatic progression in the lung cancer cell line A549. Tumor Biol. 35, 1377–1382 (2014). https://doi.org/10.1007/s13277-013-1188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1188-y

Keywords

Navigation