Skip to main content

Advertisement

Log in

Elastin in Large Artery Stiffness and Hypertension

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Large artery stiffness, as measured by pulse wave velocity, is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization, or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mulvany, M. J. (2008). Small artery remodelling in hypertension: Causes, consequences and therapeutic implications. Medical & Biological Engineering & Computing, 46(5), 461–467. doi:10.1007/s11517-008-0305-3.

    Article  Google Scholar 

  2. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet, 365(9455), 217–223. doi:10.1016/S0140-6736(05)17741-1.

    PubMed  Google Scholar 

  3. Cecelja, M., & Chowienczyk, P. (2009). Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension, 54(6), 1328–1336. doi:10.1161/HYPERTENSIONAHA.109.137653.

    Article  PubMed  CAS  Google Scholar 

  4. Messerli, F. H., Frohlich, E. D., & Ventura, H. O. (1985). Arterial compliance in essential hypertension. Journal of Cardiovascular Pharmacology, 7(Suppl 2), S33–S35.

    Article  PubMed  Google Scholar 

  5. Faury, G., Maher, G. M., Li, D. Y., Keating, M. T., Mecham, R. P., & Boyle, W. A. (1999). Relation between outer and luminal diameter in cannulated arteries. American Journal of Physiology, 277(5 Pt 2), H1745–H1753.

    PubMed  CAS  Google Scholar 

  6. Mecham, R. P. (1998). Overview of extracellular matrix. In: Current protocols in cell biology. Wiley, New York, pp 10.11.11–10.11.14.

  7. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer.

    Google Scholar 

  8. Greenwald, S. E. (2007). Ageing of the conduit arteries. The Journal of Pathology, 211(2), 157–172. doi:10.1002/path.2101.

    Article  PubMed  CAS  Google Scholar 

  9. McEniery, C. M., Wilkinson, I. B., & Avolio, A. P. (2007). Age, hypertension and arterial function. Clinical and Experimental Pharmacology & Physiology, 34(7), 665–671. doi:10.1111/j.1440-1681.2007.04657.x.

    Article  CAS  Google Scholar 

  10. Wolinsky, H., & Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circulation Research, 20(1), 99–111.

    PubMed  CAS  Google Scholar 

  11. Clark, J. M., & Glagov, S. (1985). Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis, 5(1), 19–34.

    Article  PubMed  CAS  Google Scholar 

  12. Armentano, R. L., Levenson, J., Barra, J. G., Fischer, E. I., Breitbart, G. J., Pichel, R. H., & Simon, A. (1991). Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. American Journal of Physiology, 260(6 Pt 2), H1870–H1877.

    PubMed  CAS  Google Scholar 

  13. Wolinsky, H., & Glagov, S. (1964). Structural basis for the static mechanical properties of the aortic media. Circulation Research, 14, 400–413.

    PubMed  CAS  Google Scholar 

  14. Wagenseil, J. E., & Mecham, R. P. (2009). Vascular extracellular matrix and arterial mechanics. Physiological Reviews, 89(3), 957–989. doi:10.1152/physrev.00041.2008.

    Article  PubMed  CAS  Google Scholar 

  15. Wagenseil, J. E., & Mecham, R. P. (2007). New insights into elastic fiber assembly. Birth Defects Research. Part C, Embryo Today, 81(4), 229–240.

    Article  CAS  Google Scholar 

  16. Kelleher, C. M., McLean, S. E., & Mecham, R. P. (2004). Vascular extracellular matrix and aortic development. Current Topics in Developmental Biology, 62, 153–188.

    Article  PubMed  CAS  Google Scholar 

  17. Curran, M., Atkinson, D., Ewart, A., Morris, C., Leppert, M., & Keating, M. (1993). The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell, 73(1), 159–168.

    Article  PubMed  CAS  Google Scholar 

  18. Li, D. Y., Toland, A. E., Boak, B. B., Atkinson, D. L., Ensing, G. J., Morris, C. A., & Keating, M. R. (1997). Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Human Molecular Genetics, 6, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  19. Olson, T., Michels, V., Urban, Z., Csiszar, K., Christiano, A., Driscoll, D., Feldt, R., Boyd, C., & Thibodeau, S. (1995). A 30 kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Human Molecular Genetics, 4(9), 1677–1679.

    Article  PubMed  CAS  Google Scholar 

  20. Pober, B., Johnson, M., & Urban, Z. (2008). Mechanisms and treatment of cardiovascular disease in Williams-Beuren syndrome. The Journal of Clinical Investigation, 118(5), 1606–1615. doi:10.1172/JCI35309.

    Article  PubMed  CAS  Google Scholar 

  21. Urban, Z., Michels, V. V., Thibodeau, S. N., Davis, E. C., Bonnefont, J.-P., Munnich, A., Eyskens, B., Gewillig, M., Devriendt, K., & Boyd, C. D. (2000). Isolated supravalvular aortic stenosis: Functional haploinsufficiency of the elastin gene as a result of nonsense-mediated decay. Human Genetics, 106, 577–588.

    Article  PubMed  CAS  Google Scholar 

  22. O’Connor, W. N., Davis, J. B., Jr., Geissler, R., Cottrill, C. M., Noonan, J. A., & Todd, E. P. (1985). Supravalvular aortic stenosis. Clinical and pathologic observations in six patients. Archives of Pathology & Laboratory Medicine, 109(2), 179–185.

    Google Scholar 

  23. Kozel, B. A., Wachi, H., Davis, E. C., & Mecham, R. P. (2003). Domains in tropoelastin that mediate elastin deposition in vitro and in vivo. Journal of Biological Chemistry, 278(20), 18491–18498.

    Article  PubMed  CAS  Google Scholar 

  24. Graul-Neumann, L., Hausser, I., Essayie, M., Rauch, A., & Kraus, C. (2008). Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene. American Journal of Medical Genetics. Part A, 146A(8), 977–983. doi:10.1002/ajmg.a.32242.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez-Revenga, L., Iranzo, P., Badenas, C., Puig, S., Carrio, A., & Mila, M. (2004). A novel elastin gene mutation resulting in an autosomal dominant form of cutis laxa. Archives of Dermatology, 140(9), 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  26. Tassabehji, M., Metcalfe, K., Hurst, J., Ashcroft, G. S., Kielty, C., Wilmot, C., Donnai, D., Read, A. P., & Jones, C. J. P. (1998). An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autosomal dominant cutis laxa. Human Molecular Genetics, 7, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, M. C., Giro, M., Quaglino, D., Jr., & Davidson, J. M. (1995). Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain. The Journal of Clinical Investigation, 95, 986–994.

    Article  PubMed  CAS  Google Scholar 

  28. Callewaert, B., Renard, M., Hucthagowder, V., Albrecht, B., Hausser, I., Blair, E., Dias, C., Albino, A., Wachi, H., Sato, F., Mecham, R., Loeys, B., Coucke, P., De Paepe, A., & Urban, Z. (2011). New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Human Mutation, 32(4), 445–455. doi:10.1002/humu.21462.

    Article  PubMed  CAS  Google Scholar 

  29. Damkier, A., Brandrup, F., & Starklint, H. (1991). Cutis laxa: Autosomal dominant inheritance in five generations. Clinical Genetics, 39(5), 321–329.

    Article  PubMed  CAS  Google Scholar 

  30. Szabo, Z., Crepeau, M. W., Mitchell, A. L., Stephan, M. J., Puntel, R. A., Yin Loke, K., Kirk, R. C., & Urban, Z. (2006). Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. Journal of Medical Genetics, 43, 255–258.

    Article  PubMed  CAS  Google Scholar 

  31. Urban, Z., Gao, J., Pope, F. M., & Davis, E. C. (2005). Autosomal dominant cutis laxa with severe lung disease: Synthesis and matrix deposition of mutant tropoelastin. The Journal of Investigative Dermatology, 124, 1193–1199.

    Article  PubMed  CAS  Google Scholar 

  32. Iwai, N., Kajimoto, K., Kokubo, Y., & Tomoike, H. (2006). Extensive genetic analysis of 10 candidate genes for hypertension in Japanese. Hypertension, 48(5), 901–907. doi:10.1161/01.HYP.0000242485.23148.bb.

    Article  PubMed  CAS  Google Scholar 

  33. Milewicz, D. M., Urbán, Z., & Boyd, C. D. (2000). Genetic disorders of the elastic fiber system. Matrix Biology, 19, 471–480.

    Article  PubMed  CAS  Google Scholar 

  34. Claus, S., Fischer, J., Megarbane, H., Megarbane, A., Jobard, F., Debret, R., Peyrol, S., Saker, S., Devillers, M., Sommer, P., & Damour, O. (2008). A p.C217R mutation in fibulin-5 from cutis laxa patients is associated with incomplete extracellular matrix formation in a skin equivalent model. The Journal of Investigative Dermatology, 128(6), 1442–1450. doi:10.1038/sj.jid.5701211.

    Article  PubMed  CAS  Google Scholar 

  35. Dasouki, M., Markova, D., Garola, R., Sasaki, T., Charbonneau, N., Sakai, L., & Chu, M. (2007). Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. American Journal of Medical Genetics. Part A, 143(22), 2635–2641. doi:10.1002/ajmg.a.31980.

    Article  Google Scholar 

  36. Hu, Q., Loeys, B. L., Coucke, P. J., De Paepe, A., Mecham, R. P., Choi, J., Davis, E. C., & Urban, Z. (2006). Fibulin-5 mutations: Mechanisms of impaired elastic fiber formation in recessive cutis laxa. Human Molecular Genetics, 15(23), 3379–3386.

    Article  PubMed  CAS  Google Scholar 

  37. Hucthagowder, V., Sausgruber, N., Kim, K., Angle, B., Marmorstein, L., & Urban, Z. (2006). Fibulin-4: A novel gene for an autosomal recessive cutis laxa syndrome. American Journal of Human Genetics, 78(6), 1075–1080. doi:10.1086/504304.

    Article  PubMed  CAS  Google Scholar 

  38. Loeys, B., Van Maldergem, L., Mortier, G., Coucke, P., Gerniers, S., Naeyaert, J. M., & De Paepe, A. (2002). Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Human Molecular Genetics, 11(18), 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  39. Lotery, A., Baas, D., Ridley, C., Jones, R., Klaver, C., Stone, E., Nakamura, T., Luff, A., Griffiths, H., Wang, T., Bergen, A., & Trump, D. (2006). Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Human Mutation, 27(6), 568–574. doi:10.1002/humu.20344.

    Article  PubMed  CAS  Google Scholar 

  40. Li, D. Y., Brooke, B., Davis, E. C., Mecham, R. P., Sorensen, L. K., Boak, B. B., Eichwald, E., & Keating, M. T. (1998). Elastin is an essential determinant of arterial morphogenesis. Nature, 393(6682), 276–280.

    Article  PubMed  CAS  Google Scholar 

  41. Wagenseil, J. E., Ciliberto, C. H., Knutsen, R. H., Levy, M. A., Kovacs, A., & Mecham, R. P. (2010). The importance of elastin to aortic development in mice. American Journal of Physiology - Heart and Circulatory Physiology, 299(2), H257–H264. doi:10.1152/ajpheart.00194.2010.

    Article  PubMed  CAS  Google Scholar 

  42. Wagenseil, J. E., Ciliberto, C. H., Knutsen, R. H., Levy, M. A., Kovacs, A., & Mecham, R. P. (2009). Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circulation Research, 104(10), 1217–1224. doi:10.1161/CIRCRESAHA.108.192054.

    Article  PubMed  CAS  Google Scholar 

  43. Karnik, S. K., Brooke, B. S., Bayes-Genis, A., Sorensen, L., Wythe, J. D., Schwartz, R. S., Keating, M. T., & Li, D. Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease. Development, 130(2), 411–423.

    Article  PubMed  CAS  Google Scholar 

  44. Faury, G., Pezet, M., Knutsen, R. H., Boyle, W. A., Heximer, S. P., McLean, S. E., Minkes, R. K., Blumer, K. J., Kovacs, A., Kelly, D. P., Li, D. Y., Starcher, B., & Mecham, R. P. (2003). Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. The Journal of Clinical Investigation, 112(9), 1419–1428.

    PubMed  CAS  Google Scholar 

  45. Li, D. Y., Faury, G., Taylor, D. G., Davis, E. C., Boyle, W. A., Mecham, R. P., Stenzel, P., Boak, B., & Keating, M. T. (1998). Novel arterial pathology in mice and humans hemizygous for elastin. The Journal of Clinical Investigation, 102(10), 1783–1787.

    Article  PubMed  CAS  Google Scholar 

  46. Wagenseil, J. E., Nerurkar, N. L., Knutsen, R. H., Okamoto, R. J., Li, D. Y., & Mecham, R. P. (2005). Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. American Journal of Physiology - Heart and Circulatory Physiology, 289(3), H1209–H1217.

    Article  PubMed  CAS  Google Scholar 

  47. Wagenseil, J. E., Knutsen, R. H., Li, D., & Mecham, R. P. (2007). Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension, despite higher baseline pressure and unique cardiovascular architecture. American Journal Physiology - Heart and Circulatory Physiology, 293(1), H574–H582.

    Article  CAS  Google Scholar 

  48. Le, V. P., Knutsen, R. H., Mecham, R. P., & Wagenseil, J. E. (2011). Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. American Journal of Physiology - Heart and Circulatory Physiology. doi:10.1152/ajpheart.00119.2011.

  49. Passman, J. N., Dong, X. R., Wu, S. P., Maguire, C. T., Hogan, K. A., Bautch, V. L., & Majesky, M. W. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9349–9354.

    Article  PubMed  CAS  Google Scholar 

  50. Hirano, E., Knutsen, R. H., Sugitani, H., Ciliberto, C. H., & Mecham, R. P. (2007). Functional rescue of elastin insufficiency in mice by the human elastin gene: Implications for mouse models of human disease. Circulation Research, 101(5), 523–531.

    Article  PubMed  CAS  Google Scholar 

  51. Li, Z., Froehlich, J., Galis, Z. S., & Lakatta, E. G. (1999). Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension, 33(1), 116–123.

    PubMed  CAS  Google Scholar 

  52. Tamarina, N. A., McMillan, W. D., Shively, V. P., & Pearce, W. H. (1997). Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery, 122(2), 264–271. discussion 271–262.

    Article  PubMed  CAS  Google Scholar 

  53. Yasmin, Mc. Eniery. C. M., O’Shaughnessy, K. M., Harnett, P., Arshad, A., Wallace, S., Maki-Petaja, K., McDonnell, B., Ashby, M. J., Brown, J., Cockcroft, J. R., & Wilkinson, I. B. (2006). Variation in the human matrix metalloproteinase-9 gene is associated with arterial stiffness in healthy individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8), 1799–1805. doi:10.1161/01.ATV.0000227717.46157.32.

    Article  PubMed  CAS  Google Scholar 

  54. Wolinsky, H. (1970). Response of the rat aortic media to hypertension. Morphological and chemical studies. Circulation Research, 26(4), 507–522.

    PubMed  CAS  Google Scholar 

  55. Todorovich-Hunter, L., Johnson, D., Ranger, P., Keeley, F., & Rabinovitch, M. (1988). Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Laboratory Investigation, 58(2), 184–195.

    PubMed  CAS  Google Scholar 

  56. Keeley, F. W., Elmoselhi, A., & Leenen, F. H. (1991). Effects of antihypertensive drug classes on regression of connective tissue components of hypertension. Journal of Cardiovascular Pharmacology, 17(Suppl 2), S64–S69.

    PubMed  CAS  Google Scholar 

  57. Dao, H. H., Essalihi, R., Bouvet, C., & Moreau, P. (2005). Evolution and modulation of age-related medial elastocalcinosis: Impact on large artery stiffness and isolated systolic hypertension. Cardiovascular Research, 66(2), 307–317. doi:10.1016/j.cardiores.2005.01.012.

    Article  PubMed  CAS  Google Scholar 

  58. Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21(1), 3–12. doi:10.1097/01.hjh.0000042892.24999.92.

    Article  PubMed  CAS  Google Scholar 

  59. Konova, E., Baydanoff, S., Atanasova, M., & Velkova, A. (2004). Age-related changes in the glycation of human aortic elastin. Experimental Gerontology, 39(2), 249–254. doi:10.1016/j.exger.2003.10.003.

    Article  PubMed  CAS  Google Scholar 

  60. Milewicz, D. M., Urban, Z., & Boyd, C. (2000). Genetic disorders of the elastic fiber system. Matrix Biology, 19(6), 471–480.

    Article  PubMed  CAS  Google Scholar 

  61. Allaire, E., Forough, R., Clowes, M., Starcher, B., & Clowes, A. W. (1998). Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. The Journal of Clinical Investigation, 102(7), 1413–1420. doi:10.1172/JCI2909.

    Article  PubMed  CAS  Google Scholar 

  62. Jiang, L., Wang, M., Zhang, J., Monticone, R. E., Telljohann, R., Spinetti, G., Pintus, G., & Lakatta, E. G. (2008). Increased aortic calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells. PLoS One, 3(5), e2231. doi:10.1371/journal.pone.0002231.

    Article  PubMed  Google Scholar 

  63. Castro, M. M., Rizzi, E., Figueiredo-Lopes, L., Fernandes, K., Bendhack, L. M., Pitol, D. L., Gerlach, R. F., & Tanus-Santos, J. E. (2008). Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis, 198(2), 320–331. doi:10.1016/j.atherosclerosis.2007.10.011.

    Article  PubMed  CAS  Google Scholar 

  64. Tatchum-Talom, R., Niederhoffer, N., Amin, F., Makki, T., Tankosic, P., & Atkinson, J. (1995). Aortic stiffness and left ventricular mass in a rat model of isolated systolic hypertension. Hypertension, 26(6 Pt 1), 963–970.

    PubMed  CAS  Google Scholar 

  65. Ng, K., Hildreth, C. M., Avolio, A. P., & Phillips, J. K. (2011). Angiotensin-converting enzyme inhibitor limits pulse-wave velocity and aortic calcification in a rat model of cystic renal disease. American Journal of Physiology. Renal Physiology, 301(5), F959–F966. doi:10.1152/ajprenal.00393.2011.

    Article  PubMed  CAS  Google Scholar 

  66. Schurgers, L. J., Spronk, H. M., Soute, B. A., Schiffers, P. M., DeMey, J. G., & Vermeer, C. (2007). Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood, 109(7), 2823–2831. doi:10.1182/blood-2006-07-035345.

    PubMed  CAS  Google Scholar 

  67. Gaillard, V., Casellas, D., Seguin-Devaux, C., Schohn, H., Dauca, M., Atkinson, J., & Lartaud, I. (2005). Pioglitazone improves aortic wall elasticity in a rat model of elastocalcinotic arteriosclerosis. Hypertension, 46(2), 372–379. doi:10.1161/01.HYP.0000171472.24422.33.

    Article  PubMed  CAS  Google Scholar 

  68. Bouvet, C., Moreau, S., Blanchette, J., de Blois, D., & Moreau, P. (2008). Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(5), 856–862. doi:10.1161/ATVBAHA.107.153056.

    Article  PubMed  CAS  Google Scholar 

  69. Tang, S. S., Trackman, P. C., & Kagan, H. M. (1983). Reaction of aortic lysyl oxidase with beta-aminopropionitrile. Journal of Biological Chemistry, 258(7), 4331–4338.

    PubMed  CAS  Google Scholar 

  70. Mercier, N., Kakou, A., Challande, P., Lacolley, P., & Osborne-Pellegrin, M. (2009). Comparison of the effects of semicarbazide and beta-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat. Toxicology and Applied Pharmacology, 239(3), 258–267. doi:10.1016/j.taap.2009.06.005.

    Article  PubMed  CAS  Google Scholar 

  71. Ooshima, A., & Midorikawa, O. (1977). Increased lysyl oxidase activity in blood vessels of hypertensive rats and effect of beta-aminopropionitrile on arteriosclerosis. Japanese Circulation Journal, 41(12), 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  72. Corman, B., Duriez, M., Poitevin, P., Heudes, D., Bruneval, P., Tedgui, A., & Levy, B. I. (1998). Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  73. Lansing, A. I., Rosenthal, T. B., Alex, M., & Dempsey, E. W. (1952). The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. The Anatomical Record, 114(4), 555–575.

    Article  PubMed  CAS  Google Scholar 

  74. Starcher, B. (2001). A ninhydrin-based assay to quantitate the total protein content of tissue samples. Analytical Biochemistry, 292(1), 125–129. doi:10.1006/abio.2001.5050.

    Article  PubMed  CAS  Google Scholar 

  75. Long, J. L., & Tranquillo, R. T. (2003). Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biology, 22(4), 339–350.

    Article  PubMed  CAS  Google Scholar 

  76. Starcher, B. C. (1977). Determination of the elastin content of tissues by measuring desmosine and isodesmosine. Analytical Biochemistry, 79(1–2), 11–15.

    Article  PubMed  CAS  Google Scholar 

  77. Starcher, B. C., & Mecham, R. P. (1981). Desmosine radioimmunoassay as a means of studying elastogenesis in cell culture. Connective Tissue Research, 8(3–4), 255–258.

    Article  PubMed  CAS  Google Scholar 

  78. Nonaka, R., Onoue, S., Wachi, H., Sato, F., Urban, Z., Starcher, B. C., & Seyama, Y. (2009). DANCE/fibulin-5 promotes elastic fiber formation in a tropoelastin isoform-dependent manner. Clinical Biochemistry, 42(7–8), 713–721. doi:10.1016/j.clinbiochem.2008.12.020.

    Article  PubMed  CAS  Google Scholar 

  79. Mecham, R. P. (2008). Methods in elastic tissue biology: Elastin isolation and purification. Methods, 45(1), 32–41. doi:10.1016/j.ymeth.2008.01.007.

    Article  PubMed  CAS  Google Scholar 

  80. Cox, R. H. (1983). Comparison of arterial wall mechanics using ring and cylindrical segments. American Journal of Physiology, 244(2), H298–H303.

    PubMed  CAS  Google Scholar 

  81. Okamoto, R. J., Wagenseil, J. E., DeLong, W. R., Peterson, S. J., Kouchoukos, N. T., & Sundt, T. M., 3rd. (2002). Mechanical properties of dilated human ascending aorta. Annals of Biomedical Engineering, 30(5), 624–635.

    Article  PubMed  Google Scholar 

  82. Gleason, R. L., Gray, S. P., Wilson, E., & Humphrey, J. D. (2004). A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. Journal of Biomechanical Engineering, 126(6), 787–795.

    Article  PubMed  CAS  Google Scholar 

  83. Jackson, Z. S., Gotlieb, A. I., & Langille, B. L. (2002). Wall tissue remodeling regulates longitudinal tension in arteries. Circulation Research, 90(8), 918–925.

    Article  PubMed  CAS  Google Scholar 

  84. Eberth, J. F., Taucer, A. I., Wilson, E., & Humphrey, J. D. (2009). Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Annals of Biomedical Engineering, 37(6), 1093–1104. doi:10.1007/s10439-009-9686-1.

    Article  PubMed  CAS  Google Scholar 

  85. Oliver, J. J., & Webb, D. J. (2003). Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 554–566. doi:10.1161/01.ATV.0000060460.52916.D6.

    Article  PubMed  CAS  Google Scholar 

  86. Hartley, C. J., Reddy, A. K., Madala, S., Entman, M. L., Michael, L. H., & Taffet, G. E. (2011). Doppler velocity measurements from large and small arteries of mice. American Journal of Physiology - Heart and Circulatory Physiology, 301(2), H269–H278. doi:10.1152/ajpheart.00320.2011.

    Article  PubMed  CAS  Google Scholar 

  87. Carta, L., Wagenseil, J. E., Knutsen, R. H., Mariko, B., Faury, G., Davis, E. C., Starcher, B., Mecham, R. P., & Ramirez, F. (2009). Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 2083–2089. doi:10.1161/ATVBAHA.109.193227.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute Grants HL-087653 (to J.E. Wagenseil), HL-74138 (to R.P. Mecham), and HL-105314 (to J.E. Wagenseil and R.P. Mecham).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Wagenseil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenseil, J.E., Mecham, R.P. Elastin in Large Artery Stiffness and Hypertension. J. of Cardiovasc. Trans. Res. 5, 264–273 (2012). https://doi.org/10.1007/s12265-012-9349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9349-8

Keywords

Navigation