Skip to main content

Advertisement

Log in

Use of multi-electrode array recordings in studies of network synaptic plasticity in both time and space

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Simultaneous multisite recording using multi-electrode arrays (MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology. Over the past 40 years, great efforts have been made by both scientists and commercial concerns, to advance this technique. The MEA technique has been widely applied to many regions of the brain, retina, heart and smooth muscle in various studies at the network level. The present review starts from the development of MEA techniques and their uses in brain preparations, and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains. Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays, its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 4th ed. New York: McGraw-Hill, 2000: 1414.

    Google Scholar 

  2. Taketani M, Baudry M. Advances in Network Electrophysiology Using Multi-electrode Arrays. New York: Springer Press, 2006: 478.

    Google Scholar 

  3. Nicolelis MA. Methods for Neural Ensemble Recordings. Boca Raton (FL): CRC Press, 2008: 269.

    Google Scholar 

  4. Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 1972, 74: 61–66.

    Article  PubMed  Google Scholar 

  5. Gross GW, Rieske E, Kreutzberg GW, Meyer A. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 1977, 6: 101–105.

    Article  PubMed  CAS  Google Scholar 

  6. Gross GW. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng 1979, 26: 273–279.

    Article  PubMed  CAS  Google Scholar 

  7. Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 1980, 2: 19–31.

    Article  PubMed  CAS  Google Scholar 

  8. Israel DA, Barry WH, Edell DJ, Mark RG. An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol 1984, 247: H669–674.

    PubMed  CAS  Google Scholar 

  9. Novak JL, Wheeler BC. Recording from the Aplysia abdominal ganglion with a planar microelectrode array. IEEE Trans Biomed Eng 1986, 33: 196–202.

    Article  PubMed  CAS  Google Scholar 

  10. Novak JL, Wheeler BC. Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array. J Neurosci Methods 1988, 23: 149–159.

    Article  PubMed  CAS  Google Scholar 

  11. Regehr WG, Pine J, Cohan CS, Mischke MD, Tank DW. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods 1989, 30: 91–106.

    Article  PubMed  CAS  Google Scholar 

  12. Connolly P, Clark P, Curtis AS, Dow JA, Wilkinson CD. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron 1990, 5: 223–234.

    Article  PubMed  CAS  Google Scholar 

  13. Martinoia S, Bove M, Carlini G, Ciccarelli C, Grattarola M, Storment C, et al. A general-purpose system for long-term recording from a microelectrode array coupled to excitable cells. J Neurosci Methods 1993, 48: 115–121.

    Article  PubMed  CAS  Google Scholar 

  14. Nisch W, Bock J, Egert U, Hammerle H, Mohr A. A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosens Bioelectron 1994, 9: 737–741.

    Article  PubMed  CAS  Google Scholar 

  15. Egert U, Schlosshauer B, Fennrich S, Nisch W, Fejtl M, Knott T, et al. A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Brain Res Protoc 1998, 2: 229–242.

    Article  PubMed  CAS  Google Scholar 

  16. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 1999, 93: 61–67.

    Article  PubMed  CAS  Google Scholar 

  17. Honma S, Katsuno Y, Tanahashi Y, Abe H, Honma K. Circadian rhythms of arginine vasopressin and vasoactive intestinal polypeptide do not depend on cytoarchitecture of dispersed cell culture of rat suprachiasmatic nucleus. Neuroscience 1998, 86: 967–976.

    Article  PubMed  CAS  Google Scholar 

  18. Egert U, Heck D, Aertsen A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp Brain Res 2002, 142: 268–274.

    Article  PubMed  Google Scholar 

  19. Wirth C, Luscher HR. Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays. J Neurophysiol 2004, 91: 1635–1647.

    Article  PubMed  Google Scholar 

  20. Morin FO, Takamura Y, Tamiya E. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng 2005, 100: 131–143.

    Article  PubMed  CAS  Google Scholar 

  21. He Y, Liu MG, Gong KR, Chen J. Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: Multi-electrode array recordings. Neurosci Bull 2009, 25: 309–318.

    Article  PubMed  Google Scholar 

  22. Wang DD, Li Z, Chang Y, Wang RR, Chen XF, Zhao ZY, et al. Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices. Neurosci Bull 2010, 26: 175–187.

    Article  PubMed  Google Scholar 

  23. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, et al. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 2003, 377: 486–495.

    Article  PubMed  CAS  Google Scholar 

  24. Thiebaud P, de Rooij NF, Koudelka-Hep M, Stoppini L. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Trans Biomed Eng 1997, 44: 1159–1163.

    Article  PubMed  CAS  Google Scholar 

  25. Heuschkel MO, Fejtl M, Raggenbass M, Bertrand D, Renaud P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods 2002, 114: 135–148.

    Article  PubMed  Google Scholar 

  26. Fuster JM. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate. Cambridge: MIT Press, 1999: 327.

    Google Scholar 

  27. Spruston N, Cang J. Timing isn’t everything. Nat Neurosci 2010, 13: 277–279.

    Article  PubMed  CAS  Google Scholar 

  28. Clopath C, Busing L, Vasilaki E, Gerstner W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 2010, 13: 344–352.

    Article  PubMed  CAS  Google Scholar 

  29. Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010, 92: 151–183.

    Article  PubMed  CAS  Google Scholar 

  30. Kandel ER, Squire LR. Neuroscience: breaking down scientific barriers to the study of brain and mind. Science 2000, 290: 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao XY, Liu MG, Yuan DL, Wang Y, He Y, Wang DD, et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009, 5: 55.

    Article  PubMed  Google Scholar 

  32. Liu MG, Wang RR, Chen XF, Zhang FK, Cui XY, Chen J. Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: multi-electrode array recordings. Brain Res 2011, 1382: 57–69.

    Article  PubMed  CAS  Google Scholar 

  33. Liu MG, Lu D, Wang Y, Chen XF, Li Z, Xu Y, et al. Counteracting roles of metabotropic glutamate receptor subtypes 1 and 5 in regulation of pain-related spatial and temporal synaptic plasticity in rat entorhinal-hippocampal pathways. Neurosci Lett 2012, 507: 38–42.

    Article  PubMed  CAS  Google Scholar 

  34. Nicholson C, Llinas R. Real time current source-density analysis using multi-electrode array in cat cerebellum. Brain Res 1975, 100: 418–424.

    Article  PubMed  CAS  Google Scholar 

  35. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361: 31–39.

    Article  PubMed  CAS  Google Scholar 

  36. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004, 44: 5–21.

    Article  PubMed  CAS  Google Scholar 

  37. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008, 33: 18–41.

    Article  PubMed  Google Scholar 

  38. Shimono K, Baudry M, Ho L, Taketani M, Lynch G. Long-term recording of LTP in cultured hippocampal slices. Neural Plast 2002, 9: 249–254.

    Article  PubMed  Google Scholar 

  39. Kemp A, Manahan-Vaughan D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 2007, 30: 111–118.

    Article  PubMed  CAS  Google Scholar 

  40. Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007, 30: 176–184.

    Article  PubMed  CAS  Google Scholar 

  41. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci 2010, 11: 459–473.

    Article  PubMed  CAS  Google Scholar 

  42. Hofmann F, Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris 2006, 99: 125–132.

    Article  PubMed  CAS  Google Scholar 

  43. Steidl EM, Neveu E, Bertrand D, Buisson B. The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res 2006, 1096: 70–84.

    Article  PubMed  CAS  Google Scholar 

  44. Duport S, Millerin C, Muller D, Correges P. A metallic multisite recording system designed for continuous long-term monitoring of electrophysiological activity in slice cultures. Biosens Bioelectron 1999, 14: 369–376.

    Article  PubMed  CAS  Google Scholar 

  45. Shimono K, Brucher F, Granger R, Lynch G, Taketani M. Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci 2000, 20: 8462–8473.

    PubMed  CAS  Google Scholar 

  46. Shimono K, Baudry M, Panchenko V, Taketani M. Chronic multichannel recordings from organotypic hippocampal slice cultures: protection from excitotoxic effects of NMDA by non-competitive NMDA antagonists. J Neurosci Methods 2002, 120: 193–202.

    Article  PubMed  CAS  Google Scholar 

  47. Shimono K, Kubota D, Brucher F, Taketani M, Lynch G. Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal field CA1. Brain Res 2002, 950: 279–287.

    Article  PubMed  CAS  Google Scholar 

  48. Stoppini L, Duport S, Correges P. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures. J Neurosci Methods 1997, 72: 23–33.

    Article  PubMed  CAS  Google Scholar 

  49. Pimashkin A, Kastalskiy I, Simonov A, Koryagina E, Mukhina I, Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures. Front Comput Neuroscience 2011, 5: 46.

    Google Scholar 

  50. Ito D, Tamate H, Nagayama M, Uchida T, Kudoh SN, Gohara K. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience 2010, 171: 50–61.

    Article  PubMed  CAS  Google Scholar 

  51. Krause M, Jia Y. Serotonergic modulation of carbachol-induced rhythmic activity in hippocampal slices. Neuropharmacology 2005, 48: 381–390.

    Article  PubMed  CAS  Google Scholar 

  52. Huang CW, Hsieh YJ, Tsai JJ, Huang CC. Effects of lamotrigine on field potentials, propagation, and long-term potentiation in rat prefrontal cortex in multi-electrode recording. J Neurosci Res 2006, 83: 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  53. Berger TW, Song D, Chan RH, Marmarelis VZ, LaCoss J, Wills J, et al. A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans Neural Syst Rehabil Eng 2012, 20: 198–211.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, MG., Chen, XF., He, T. et al. Use of multi-electrode array recordings in studies of network synaptic plasticity in both time and space. Neurosci. Bull. 28, 409–422 (2012). https://doi.org/10.1007/s12264-012-1251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1251-5

Keywords

Navigation