Skip to main content
Log in

High Throughput Sequencing: An Overview of Sequencing Chemistry

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the present century sequencing is to the DNA science, what gel electrophoresis was to it in the last century. From 1977 to 2016 three generation of the sequencing technologies of various types have been developed. Second and third generation sequencing technologies referred commonly to as next generation sequencing technology, has evolved significantly with increase in sequencing speed, decrease in sequencing cost, since its inception in 2004. GS FLX by 454 Life Sciences/Roche diagnostics, Genome Analyzer, HiSeq, MiSeq and NextSeq by Illumina, Inc., SOLiD by ABI, Ion Torrent by Life Technologies are various type of the sequencing platforms available for second generation sequencing. The platforms available for the third generation sequencing are Helicos™ Genetic Analysis System by SeqLL, LLC, SMRT Sequencing by Pacific Biosciences, Nanopore sequencing by Oxford Nanopore’s, Complete Genomics by Beijing Genomics Institute and GnuBIO by BioRad, to name few. The present article is an overview of the principle and the sequencing chemistry of these high throughput sequencing technologies along with brief comparison of various types of sequencing platforms available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–5467. doi:10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. PNAS 74:560–564. doi:10.1073/pnas.74.2.560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and IlluminaMiSeq sequencers. BMC Genom 13:13. doi:10.1186/1471-2164-13-341

    Article  Google Scholar 

  4. Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15:1767–1776. doi:10.1101/gr.3770505

    Article  CAS  PubMed  Google Scholar 

  5. Metzker ML (2009) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    Article  PubMed  Google Scholar 

  6. Scholz MB, Lo CC, Chain PSG (2012) Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:9–15. doi:10.1016/j.copbio.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  7. Marzorati M, Maignien L, Verhelst A, Luta G, Sinnott R, Kerckhof FM, Possemiers S (2013) Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. Antonie Van Leeuwenhoek 103:409–420. doi:10.1007/s10482-012-9821-0

    Article  CAS  PubMed  Google Scholar 

  8. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. doi:10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi:10.1038/ismej.2011.159

    Article  CAS  PubMed  Google Scholar 

  10. Caruccio N (2011) Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Method Mol Biol 733:241–255. doi:10.1007/978-1-61779-089-8_17

    Article  CAS  Google Scholar 

  11. Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D (2011) Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS ONE 6:e28240. doi:10.1371/journal.pone.0028240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parkinson NJ, Maslau S, Ferneyhough B, Zhang G, Gregory L, Buck D, Ragoussis J, Ponting CP, Fischer MD (2012) Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA. Genome Res 22:125–133. doi:10.1101/gr.124016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L et al (2013) Exploring nucleo-cytoplasmic large DNA viruses inTara Oceans microbial metagenomes. ISME Journal 7:1678–1695. doi:10.1038/ismej.2013.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810. doi:10.1073/pnas.0708897105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5:999–1013. doi:10.1038/ismej.2010.189

    Article  CAS  PubMed  Google Scholar 

  16. Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268. doi:10.1038/ismej.2012.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao K, Ding W, Wang F, Li H, Ma D, Wang H (2011) Emulsion PCR: a High Efficient Way of PCR Amplification of Random DNA Libraries in Aptamer Selection. PLoS ONE 6:e24910. doi:10.1371/journal.pone.0024910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawashima Eric H, Laurent Farinelli; Pascal Mayer (2005-05-12). ”Patent: Method of nucleic acid amplification”. Retrieved 2012-12-22

  19. Fakruddin M, Chowdhury A, Hossain M, Mannan KSB, Mazumdar RM (2012) Pyrosequencing-principles and applications. Life 50:65

    Google Scholar 

  20. Berglund EC, Kiialainen A, Syvänen AC (2011) Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2:23. doi:10.1186/2041-2223-2-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Sonnaert M, Roberts SJ, Luyten FP, Schrooten J (2012) Tissue engineering part C. Methods 18:444–452. doi:10.1089/ten.tec.2011.0304

    Google Scholar 

  22. Reuter JA, Spacek DV, Snyder MP (2015) High-Throughput Sequencing Technologies. Mol Cell 58:586–597. doi:10.1016/j.molcel.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html

  24. Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genetics 30:418–426. doi:10.1016/j.tig.2014.07.001

    Article  Google Scholar 

  25. Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33:433–435. doi:10.1038/nbt0515-433

    Article  CAS  PubMed  Google Scholar 

  26. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi:10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  27. Mascher M, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi:10.1371/journal.pone.0076925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meldrum C, Doyle MR, Tothill RW (2011) Next-Generation Sequencing for Cancer Diagnostics: a Practical Perspective. Clin Biochem Rev 32:177–195. PMCID: PMC3219767

  29. Veras AAO, de Sál PHCG, Pinheiro KC, das Graças DA, Baraúna RA, Schneider MPC, Azevedo V, Ramos RTJ, Silva A (2014) Efficiency of Corynebacterium pseudotuberculosis 31 Genome Assembly with the Hi-Q Enzyme on an Ion Torrent PGM Sequencing Platform. J Proteomics Bioinform 7:12. doi:10.4172/jpb.1000342

    Google Scholar 

  30. Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol vol. 2012, Article ID 251364, 11 pages, 2012. doi:10.1155/2012/251364

  31. Schadt EE, Turner S, Kasarskis Andrew (2010) A window into third-generation sequencing. Hum Mol Genet 2010:R227–R240. doi:10.1093/hmg/ddq416

    Article  Google Scholar 

  32. Rusk N (2009) Cheap third-generation sequencing. Nat Methods 6:244. doi:10.1038/nmeth0409-244a

    Article  CAS  Google Scholar 

  33. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303. doi:10.1146/annurev-anchem-062012-092628

    Article  CAS  Google Scholar 

  34. Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109. doi:10.1126/science.1150427

    Article  CAS  PubMed  Google Scholar 

  35. Hart C, Lipson D, Ozsolak F, Raz T, Steinmann K, Thompson J, Milos PM (2010) Single molecule sequencing:sequence method to enable accurate quantitation. Methods Enzymol 472:407–430. doi:10.1016/S0076-6879(10)72002-4

    Article  CAS  PubMed  Google Scholar 

  36. Hayden EC (2012) Nanopore genome sequencer makes its debut. Nature. doi:10.1038/nature.2012.10051

    Google Scholar 

  37. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akesen M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12:351–356. doi:10.1038/nmeth.3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev 42:15–28. doi:10.1039/c2cs35286a

    Article  CAS  PubMed  Google Scholar 

  39. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8. doi:10.1016/j.bdq.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. http://nextgenseek.com/2012/07/complete-genomics-new-technology-to-produce-accurate-sequencing-with-small-amount-of-dna/

  41. Basu A, Macosko E, Shalek A, McCarroll S, Regev A, and Weitz D (2014) Single-cell genomics using droplet-based microfuidics. Bull Am Phys Soc: APS March Meeting 2014 59:3–7, Denver, Colorado

  42. Erlich Y (2015) A vision for ubiquitous sequencing. BioRxiv. doi:10.1101/019018

    Google Scholar 

  43. Rieber N, Zapatka M, Lasitschka B, Jones D, Northcott P, Hutter B et al (2013) Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies. PLoS ONE 8:e66621. doi:10.1371/journal.pone.0066621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patnaik BB, Park SY, Kang SW, Hwang H-J, Wang TH, Park EB et al (2016) Transcriptome Profile of the Asian Giant Hornet (Vespa mandarinia) Using Illumina HiSeq 4000 Sequencing: De Novo Assembly, Functional Annotation, and Discovery of SSR Markers. Int J Genomics, 2016:4169587. http://doi.org/10.1155/2016/4169587

  45. Rosenberg AZ, Armani MD, Fetsch PA, Xi L, Pham TT, Raffeld M et al (2016). High-Throughput Microdissection for Next-Generation Sequencing. PLoS ONE 11:e0151775. http://doi.org/10.1371/journal.pone.0151775

  46. Yu P, Lin W (2016). Single-cell transcriptome study as big data. Genomics Proteomics Bioinf 14:21–30. http://doi.org/10.1016/j.gpb.2016.01.005

Download references

Acknowledgments

Authors are thankful to DBT (BT/PR5534/PBD/16/1006/2012), UGC (42-168/2013(SR)) and ICAR-NBAIM (NBAIM/AMAAS/2014-15/81) for funding of various projects. SA and RG are thankful to UGC-CSIR for NET Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Vakhlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambardar, S., Gupta, R., Trakroo, D. et al. High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian J Microbiol 56, 394–404 (2016). https://doi.org/10.1007/s12088-016-0606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0606-4

Keywords

Navigation