Skip to main content
Log in

Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity over time. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DIV:

days in vitro

FEP:

fluorinated ethylene propylene

HBSS:

Hanks balanced salt solution

ITO:

indium tin oxide

MEA:

microelectrode array

PDMS:

polydimethylsiloxane

PMMA:

polymethyl methacrylate

PS:

polystyrene

PTFE:

polytetrafluorethylene

References

  • Arimochi H and Morita K 2005 High salt culture conditions suppress proliferation of rat C6 glioma cell by arresting cell-cycle progression at S-phase; J. Mol. Neurosci. 27 293–301

    Article  CAS  Google Scholar 

  • Bavister B D 1988 A minichamber device for maintaining a constant carbon dioxide in air atmosphere during prolonged culture of cells on the stage of an inverted microscope; In Vitro Cell. Dev. Biol. 24 759–763

    Article  CAS  Google Scholar 

  • Blau A, Weinl C, Mack J, Kienle S, Jung G and Ziegler C 2001 Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films; J. Neurosci. Methods 112 65–73

    Article  CAS  Google Scholar 

  • Blau A W and Ziegler C M 2001 Prototype of a novel autonomous perfusion chamber for long-term culturing and in situ investigation of various cell types; J. Biochem. Biophys. Methods 50 15–27

    Article  CAS  Google Scholar 

  • Bruner S 2003 Avoiding cure inhibition and bubbles with Lightspan optical materials (application notes) (www.nusil.com)

  • Chen J, Wang W, Fang J and Varahramyan K 2004 Variable-focusing microlens with microfluidic chip; J. Micromech. Microeng. 14 675–680

    Article  CAS  Google Scholar 

  • Chen Z, Hothi S S, Xu W and Huang C L 2007 Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions; J. Muscle Res. Cell Motil. 28 195–202

    Article  Google Scholar 

  • De Bartolo L, Salerno S, Morelli S, Giorno L, Rende M, Memoli B, Procino A, Andreucci V E, Bader A and Drioli E 2006 Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor; Biomaterials 27 4794–4803

    Article  Google Scholar 

  • Dong H W and Buonomano D V 2005 A technique for repeated recordings in cortical organotypic slices; J. Neurosci. Methods 146 69–75

    Article  Google Scholar 

  • Dow Corning Corporation 2005 SYLGARD® 184 silicone elastomer kit (product information) (www.dowcorning.com)

  • Forsythe I D and Coates R T 1988 A chamber for electrophysiological recording from cultured neurones allowing perfusion and temperature control; J. Neurosci. Methods 25 19–27

    Article  CAS  Google Scholar 

  • Goldman S A and Nedergaard M 1992 Newly generated neurons of the adult songbird brain become functionally active in long-term culture; Dev. Brain Res. 68 217–223

    Article  CAS  Google Scholar 

  • Gross G W and Schwalm F U 1994 A closed chamber for long-term electrophysiological and microscopical monitoring of monolayer neuronal networks; J. Neurosci. Methods 52 73–85

    Article  CAS  Google Scholar 

  • Hing W A, Poole C A, Jensen C G and Watson M 2000 An integrated environmental perfusion chamber and heating system for long-term, high resolution imaging of living cells; J. Microsc. 199(Pt 2) 90–95

    Article  CAS  Google Scholar 

  • Ho C L, Mou T Y, Chiang P S, Weng C L and Chow N H 2005 Mini chamber system for long-term maintenance and observation of cultured cells; Biotechniques 38 267–273

    Article  CAS  Google Scholar 

  • Hu S, Ren X, Bachman M, Sims C E, Li G P and Allbritton N 2002 Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting; Anal. Chem. 74 4117–4123

    Article  CAS  Google Scholar 

  • Ince C, van Dissel J T and Diesselhoff M M 1985 A teflon culture dish for high-magnification microscopy and measurements in single cells; Pflugers Arch. 403 240–244

    Article  CAS  Google Scholar 

  • Kallos M S, Behie L A and Vescovi A L 1999 Extended serial passaging of mammalian neural stem cells in suspension bioreactors; Biotechnol. Bioeng. 65 589–599

    Article  CAS  Google Scholar 

  • Kim S U, Osborne D N, Kim M W, Spigelman I, Puil E, Shin D H and Eisen A 1988 Long-term culture of human fetal spinal cord neurons: morphological, immunocytochemical and electrophysiological characteristics; Neuroscience 25 659–670

    Article  CAS  Google Scholar 

  • Klebe R J, Lyn S, Magnuson V L and Zardeneta G 1990 Cultivation of mammalian cells in heat-sealable pouches that are permeable to carbon dioxide; Exp. Cell Res. 188 316–319

    Article  CAS  Google Scholar 

  • Krause G, Lehmann S, Lehmann M, Freund I, Schreiber E and Baumann W 2006 Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays; Biosens. Bioelectron. 21 1272–1282

    Article  CAS  Google Scholar 

  • Leclerc E, Sakai Y and Fujii T 2004 Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes; Biotechnol. Prog. 20 750–755

    Article  CAS  Google Scholar 

  • Lesuisse C and Martin L J 2001 Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death; J. Neurobiol. 51 9–23

    Article  Google Scholar 

  • Luh E H, Shackford S R, Shatos M A and Pietropaoli J A 1996 The effects of hyperosmolarity on the viability and function of endothelial cells; J. Surg. Res. 60 122–128

    Article  CAS  Google Scholar 

  • Maher M P and McKinney S 1995 Careful control of osmolarity and pH enhances survival in hippocampal cultures (San Diego: Society for Neuroscience) 11–16 November

    Google Scholar 

  • Martinoia S, Bonzano L, Chiappalone M, Tedesco M, Marcoli M and Maura G 2005 In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications; Biosens. Bioelectron. 20 2071–2078

    Article  CAS  Google Scholar 

  • Morin F O, Takamura Y and Tamiya E 2005 Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives; J. Biosci. Bioeng. 100 131–143

    Article  CAS  Google Scholar 

  • Morita K 2007 High salt culture conditions inhibit serum- and NGF- but not PMA-induced Egr-1 gene transcription in rat C6 glioma cells; J. Mol. Neurosci. 33 216–223

    Article  CAS  Google Scholar 

  • Morton M 1987 Rubber technology (New York: Springer)

    Book  Google Scholar 

  • Olsen M, Sarup A, Larsson O M and Schousboe A 2005 Effect of hyperosmotic conditions on the expression of the betaine-GABA-transporter (BGT-1) in cultured mouse astrocytes; Neurochem. Res. 30 855–865

    Article  CAS  Google Scholar 

  • Pentz S and Horler H 1992 A variable cell culture chamber for ‘open’ and ‘closed’ cultivation, perfusion and high microscopic resolution of living cells; J. Microsc. 167 97–103

    Article  CAS  Google Scholar 

  • Petronis S, Stangegaard M, Christensen C B and Dufva M 2006 Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion; Biotechniques 40 368–376

    Article  CAS  Google Scholar 

  • Potter S M and DeMarse T B 2001 A new approach to neural cell culture for long-term studies; J. Neurosci. Methods 110 17–24

    Article  CAS  Google Scholar 

  • Prokop A, Prokop Z, Schaffer D, Kozlov E, Wikswo J, Cliffel D and Baudenbacher F 2004 NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale; Biomed. Microdev. 6 325–339

    Article  CAS  Google Scholar 

  • Schmied B M, Ulrich A, Matsuzaki H, Ding X, Ricordi C, Moyer M P, Batra S K, Adrian T E and Pour P M 2000 Maintenance of human islets in long-term culture; Differentiation 66 173–180

    Article  CAS  Google Scholar 

  • Vicario-Abejón C 2004 Long-term culture of hippocampal neurons; in Current protocols in neuroscience (eds) J N Crawley, C R Gerfen, M A Rogawski, D R Sibley, P Skolnick and S Wray (New York: John Wiley) pp Unit 3.2

    Google Scholar 

  • Wacker 2006 Elastosil RT601 (product information) (www.wacker.com)

  • Walker G M, Ozers M S and Beebe D J 2002 Insect cell culture in microfluidic channels; Biomed. Microdev. 4 161–166

    Article  CAS  Google Scholar 

  • Wuertz K, Urban J P, Klasen J, Ignatius A, Wilke H J, Claes L and Neidlinger-Wilke C 2007 Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells; J. Orthop. Res. 25 1513–1522

    Article  CAS  Google Scholar 

  • Xiang Z, Hrabetova S, Moskowitz S I, Casaccia-Bonnefil P, Young S R, Nimmrich V C, Tiedge H, Einheber S, Karnup S, Bianchi R and Bergold P J 2000 Long-term maintenance of mature hippocampal slices in vitro; J. Neurosci. Methods 98 145–154

    Article  CAS  Google Scholar 

  • Yeung C K, Lauer L, Offenhausser A and Knoll W 2001 Modulation of the growth and guidance of rat brain stem neurons using patterned extracellular matrix proteins; Neurosci. Lett. 301 147–150

    Article  CAS  Google Scholar 

  • Zhang H, Zhao Y, Zhao C, Yu S, Duan D and Xu Q 2005 Long-term expansion of human neural progenitor cells by epigenetic stimulation in vitro; Neurosci. Res. 51 157–165

    Article  Google Scholar 

References

  • Arkles B 1997 Silicon esters; in Kirk-Othmer encyclopedia of chemical technology (New York: John Wiley) pp 69–81

    Google Scholar 

  • Chang W-J, Akin D, Sedlak M, Ladisch M R and Bashir R 2003 Polydimethylsiloxane (PDMS) and silicon hybrid biochip for bacterial culture; Biomed. Microdev. 5 281–290

    Article  CAS  Google Scholar 

  • Dow Corning Corporation 2005 SYLGARD® 184 silicone elastomer kit (product information) (www.dowcorning.com)

  • efunda 2007 Engineering fundamentals: polymers (www.efunda.com/materials/polymers/

  • Ertel S I, Ratner B D, Kaul A, Schway M B and Horbett T A 1994 In vitro study of the intrinsic toxicity of synthetic surfaces to cells; J. Biomed. Mat. Res. 28 667–675

    Article  CAS  Google Scholar 

  • Favre E, Schaetzel P, Nguygen Q T, Clement R and Neel J 1994 Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis; J. Membr. Sci. 92 169–184

    Article  CAS  Google Scholar 

  • Gelest Inc. 2006 Reference librarywww.gelest.com/library/

  • Goodfellow 2006 Material propertieswww.goodfellow.com

  • Grzybowski B A, Brittain S T and Whitesides G M 1999 Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media; Rev. Sci. Instr. 70 2031–2037

    Article  CAS  Google Scholar 

  • Houston K S, Weinkauf D H and Stewart F F 2002 Gas transport characteristics of plasma treated poly(dimethyl siloxane) and polyphosphazene membrane materials; J. Membr. Sci. 205 103–112

    Article  CAS  Google Scholar 

  • Jo B H, Van Lerberghe L M, Motsegood K M and Beebe D J 2000 Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer; J. Micromech. Syst. 9 76–81

    Article  CAS  Google Scholar 

  • Kuo A C M 1999 Polymer data handbook (Oxford: Oxford University Press)

    Google Scholar 

  • Lee J N, Park C and Whitesides G M 2003 Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices; Anal. Chem. 75 6544–6554

    Article  CAS  Google Scholar 

  • Lynch D S and Lynch W 1978 Handbook of silicone rubber fabrication (New York: Van Nostrand Reinhold Company)

    Google Scholar 

  • Merkel T C, Bondar V I, Nagai K, Freeman B D and Pinnau I 2000 Gas sorption, diffusion, and permeation in poly(dimethylsiloxane); J. Polym. Sci., Part B: Polym. Phys. 38 415–434

    Article  CAS  Google Scholar 

  • Noll W 1968 Chemistry and technology of silicones (New York: Academic Press)

    Google Scholar 

  • NuSil Technology 2004 Silicone terms and definitions (www.nusil.com)

  • Parker S, Meththananda I, Braden M and Pearson G 2006 Characterisation of some experimental silicones; J. Mater. Sci. — Mater. Med. 17 1255–1258

    Article  CAS  Google Scholar 

  • Piruska A, Nikcevic I, Lee S H, Ahn C, Heineman W R, Limbach P A and Seliskar C J 2005 The autofluorescence of plastic materials and chips measured under laser irradiation; Lab. Chip 5 1348–1354

    Article  CAS  Google Scholar 

  • Randall G C and Doyle P S 2005 Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices; Proc. Natl. Acad. Sci. USA 102 10813–10818

    Article  CAS  Google Scholar 

  • Reilly B and Bruner S 2004 Silicones as a material of choice for drug delivery applications (Honolulu, Hawaii: 31st Annual Meeting and Exposition of the Controlled Release Society) 12–16 June

  • Riegler B, Bruner S and Thomaier R 2004 Optical silicones for use in harsh operating environments (Philadelphia: Optics East) 25–28 October

    Book  Google Scholar 

  • Robb W L 1968 Thin silicone membranes — their permeation properties and some applications; Ann. N.Y. Acad. Sci. 146 119–137

    Article  CAS  Google Scholar 

  • Schirrer R, Thepin P and Torres G 1992 Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds; J. Mater. Sci. 27 3424–3434

    Article  CAS  Google Scholar 

  • Stern S A 1968 The ‘Barrer’ permeability unit; J. Polym. Sci. 6 1933–1934

    CAS  Google Scholar 

  • Tanimura M 1993 Handbook of silicone materials (Tokyo: Toray Dow Corning Silicone)

    Google Scholar 

  • Wacker 2006 Elastosil RT601 (product information) (www.wacker.com)

  • Watson J M and Baron M G 1996 The behaviour of water in poly(dimethylsiloxane); J. Membr. Sci. 110 47–57

    Article  CAS  Google Scholar 

  • Younan Xia G M W 1998 Soft lithography; Angew. Chem. Int. Ed. 37 550–575

    Article  Google Scholar 

Reference

  • Bruner S 2003 Avoiding cure inhibition and bubbles with Lightspan optical materials (application notes) (www.nusil.com)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Blau.

Additional information

Supplementary material pertaining to this article is available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/mar2009/pp59-69-suppl.pdf

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blau, A., Neumann, T., Ziegler, C. et al. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures. J Biosci 34, 59–69 (2009). https://doi.org/10.1007/s12038-009-0009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0009-3

Keywords

Navigation