Skip to main content

Advertisement

Log in

Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Jager PL, Bennett DA (2013) An inflection point in gene discovery efforts for neurodegenerative diseases: from syndromic diagnoses toward endophenotypes and the epigenome. JAMA Neurol 70(6):719–726. doi:10.1001/jamaneurol.2013.275

    PubMed Central  PubMed  Google Scholar 

  2. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8(9):518–530. doi:10.1038/nrneurol.2012.156

    CAS  PubMed  Google Scholar 

  3. Nelson PT, Keller JN (2007) RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol 66(6):461–468. doi:10.1097/01.jnen.0000240474.27791.f3

    CAS  PubMed  Google Scholar 

  4. Pearson H (2006) Genetics: what is a gene? Nature 441(7092):398–401. doi:10.1038/441398a

    CAS  PubMed  Google Scholar 

  5. Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18(1):130–138. doi:10.1111/j.1750-3639.2007.00120.x

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  PubMed  Google Scholar 

  7. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921

    CAS  PubMed  Google Scholar 

  8. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8):R173. doi:10.1186/gb-2007-8-8-r173

    PubMed Central  PubMed  Google Scholar 

  9. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498. doi:10.1126/science.1059581

    CAS  PubMed  Google Scholar 

  10. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17(19):3030–3042. doi:10.1093/hmg/ddn201

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stahler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14(7):R78. doi:10.1186/gb-2013-14-7-r78

    PubMed Central  PubMed  Google Scholar 

  12. Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T (2013) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci. doi:10.1016/j.jns.2013.10.002

    Google Scholar 

  13. Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496. doi:10.1016/j.expneurol.2011.11.026

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menendez M, Alvarez V (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260(5):1420–1422. doi:10.1007/s00415-013-6900-8

    PubMed  Google Scholar 

  15. Li MM, Li XM, Zheng XP, Yu JT, Tan L (2013) MicroRNAs dysregulation in epilepsy. Brain Res. doi:10.1016/j.brainres.2013.09.049

    Google Scholar 

  16. Tan L, Yu JT, Hu N (2013) Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 47(1):382–393. doi:10.1007/s12035-012-8359-5

    CAS  PubMed  Google Scholar 

  17. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101. doi:10.1038/nsmb1167

    CAS  PubMed  Google Scholar 

  19. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240. doi:10.1038/nature03120

    CAS  PubMed  Google Scholar 

  20. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. doi:10.1126/science.1062961

    CAS  PubMed  Google Scholar 

  21. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  22. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. doi:10.1016/j.molcel.2007.05.001

    CAS  PubMed  Google Scholar 

  23. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296. doi:10.1038/35005107

    CAS  PubMed  Google Scholar 

  24. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44(3):359–373. doi:10.1007/s12035-011-8211-3

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206. doi:10.1016/j.tins.2008.12.003

    CAS  PubMed  Google Scholar 

  27. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68. doi:10.1186/gb-2004-5-9-r68

    PubMed Central  PubMed  Google Scholar 

  28. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13. doi:10.1186/gb-2004-5-3-r13

    PubMed Central  PubMed  Google Scholar 

  29. Gao FB (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 31(1):20–26. doi:10.1016/j.tins.2007.10.004

    PubMed Central  PubMed  Google Scholar 

  30. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. doi:10.1038/35053110

    CAS  PubMed  Google Scholar 

  31. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    CAS  PubMed  Google Scholar 

  32. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. doi:10.1126/science.1140481

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. doi:10.1016/j.molcel.2007.07.015

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4(5):375–376. doi:10.1016/j.stem.2009.04.007

    CAS  PubMed  Google Scholar 

  35. Smith P, Al Hashimi A, Girard J, Delay C, Hebert SS (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116(2):240–247. doi:10.1111/j.1471-4159.2010.07097.x

    CAS  PubMed  Google Scholar 

  36. Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24(1):157–163. doi:10.1016/j.molcel.2006.07.030

    CAS  PubMed  Google Scholar 

  37. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204(7):1553–1558. doi:10.1084/jem.20070823

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145. doi:10.1016/j.cell.2007.09.020

    CAS  PubMed  Google Scholar 

  39. Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94(4):896–905. doi:10.1111/j.1471-4159.2005.03224.x

    CAS  PubMed  Google Scholar 

  40. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100. doi:10.1016/j.cell.2007.06.028

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Zofall M, Grewal SI (2006) RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol 71:487–496. doi:10.1101/sqb.2006.71.059

    CAS  PubMed  Google Scholar 

  42. Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107(30):13318–13323. doi:10.1073/pnas.1008227107

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466(7306):637–641. doi:10.1038/nature09191

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Savas JN, Makusky A, Ottosen S, Baillat D, Then F, Krainc D, Shiekhattar R, Markey SP, Tanese N (2008) Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci U S A 105(31):10820–10825. doi:10.1073/pnas.0800658105

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116(9):1111–1162. doi:10.1007/s00702-009-0240-y

    CAS  PubMed  Google Scholar 

  46. Sonntag KC (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 1338:48–57. doi:10.1016/j.brainres.2010.03.106

    CAS  PubMed  Google Scholar 

  47. Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10. doi:10.1186/1750-1326-3-10

    PubMed Central  PubMed  Google Scholar 

  48. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33(3):422–428. doi:10.1016/j.nbd.2008.11.009

    CAS  PubMed  Google Scholar 

  49. Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284(4):1971–1981. doi:10.1074/jbc.M807530200

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273. doi:10.1016/j.brainresbull.2009.08.006

    CAS  PubMed  Google Scholar 

  51. LeBlanc AC (2005) The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2(4):389–402

    CAS  PubMed  Google Scholar 

  52. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008

    PubMed Central  PubMed  Google Scholar 

  53. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31(41):14820–14830. doi:10.1523/JNEUROSCI.3883-11.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Brouwers N, Sleegers K, Van Broeckhoven C (2008) Molecular genetics of Alzheimer’s disease: an update. Ann Med 40(8):562–583. doi:10.1080/07853890802186905

    CAS  PubMed  Google Scholar 

  55. Jayadev S, Case A, Alajajian B, Eastman AJ, Moller T, Garden GA (2013) Presenilin 2 influences miR146 level and activity in microglia. J Neurochem. doi:10.1111/jnc.12400

    PubMed Central  PubMed  Google Scholar 

  56. Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6):739–749. doi:10.1111/jnc.12437

    CAS  PubMed  Google Scholar 

  57. Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33(37):14645–14659. doi:10.1523/JNEUROSCI.1327-13.2013

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Santosh PS, Arora N, Sarma P, Pal-Bhadra M, Bhadra U (2009) Interaction map and selection of microRNA targets in Parkinson’s disease-related genes. J Biomed Biotechnol 2009:363145. doi:10.1155/2009/363145

    Google Scholar 

  59. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–13057. doi:10.1073/pnas.0906277106

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734. doi:10.1074/jbc.M109.086827

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Itoh N, Ohta H (2013) Roles of FGF20 in dopaminergic neurons and Parkinson’s disease. Front Mol Neurosci 6:15. doi:10.3389/fnmol.2013.00015

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82(2):283–289. doi:10.1016/j.ajhg.2007.09.021

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H (2013) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22(3):608–620. doi:10.1093/hmg/dds470

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Ang SL (2009) Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. Adv Exp Med Biol 651:58–65

    CAS  PubMed  Google Scholar 

  65. Lin W, Metzakopian E, Mavromatakis YE, Gao N, Balaskas N, Sasaki H, Briscoe J, Whitsett JA, Goulding M, Kaestner KH, Ang SL (2009) Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 333(2):386–396. doi:10.1016/j.ydbio.2009.07.006

    CAS  PubMed  Google Scholar 

  66. Kittappa R, Chang WW, Awatramani RB, McKay RD (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5(12):e325. doi:10.1371/journal.pbio.0050325

    PubMed Central  PubMed  Google Scholar 

  67. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 64(6):807–827. doi:10.1016/j.neuron.2009.11.006

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38(20):7219–7235. doi:10.1093/nar/gkq575

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Sinha M, Mukhopadhyay S, Bhattacharyya NP (2012) Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular Med 14(4):221–243. doi:10.1007/s12017-012-8183-0

    CAS  PubMed  Google Scholar 

  71. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35(1):76–83. doi:10.1038/ng1219

    CAS  PubMed  Google Scholar 

  72. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. doi:10.1038/ng1725

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R, Hudson BG, John SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H (2007) Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129(1):179–193. doi:10.1016/j.cell.2007.02.035

    CAS  PubMed  Google Scholar 

  74. Chouliaras L, van den Hove DL, Kenis G, Dela Cruz J, Lemmens MA, van Os J, Steinbusch HW, Schmitz C, Rutten BP (2011) Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 25(4):616–623. doi:10.1016/j.bbi.2010.11.016

    CAS  PubMed  Google Scholar 

  75. Fraga MF (2009) Genetic and epigenetic regulation of aging. Curr Opin Immunol 21(4):446–453. doi:10.1016/j.coi.2009.04.003

    CAS  PubMed  Google Scholar 

  76. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–29R. doi:10.1203/pdr.0b013e3180457684

    CAS  PubMed  Google Scholar 

  77. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev 12(4):1024–1041. doi:10.1016/j.arr.2013.05.003

    CAS  PubMed  Google Scholar 

  78. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636. doi:10.1523/JNEUROSCI.1639-11.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90(4):498–510. doi:10.1016/j.pneurobio.2010.01.002

    CAS  PubMed  Google Scholar 

  80. Grayson DR, Guidotti A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 38(1):138–166. doi:10.1038/npp.2012.125

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423. doi:10.1158/0008-5472.CAN-06-4074

    CAS  PubMed  Google Scholar 

  82. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429. doi:10.1158/0008-5472.CAN-06-4218

    CAS  PubMed  Google Scholar 

  83. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E, Rehli M, Byrd JC, Wendtner CM, Plass C (2012) Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res 72(15):3775–3785. doi:10.1158/0008-5472.CAN-12-0803

    CAS  PubMed  Google Scholar 

  84. Li J, Harris RA, Cheung SW, Coarfa C, Jeong M, Goodell MA, White LD, Patel A, Kang SH, Shaw C, Chinault AC, Gambin T, Gambin A, Lupski JR, Milosavljevic A (2012) Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet 8(5):e1002692. doi:10.1371/journal.pgen.1002692

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Saito Y, Saito H (2012) MicroRNAs in cancers and neurodegenerative disorders. Front Genet 3:194. doi:10.3389/fgene.2012.00194

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281. doi:10.1158/0008-5472.CAN-05-3632

    CAS  PubMed  Google Scholar 

  87. Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6(5):433–444. doi:10.1016/j.stem.2010.02.017

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141. doi:10.1083/jcb.200908151

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5(1):e8697. doi:10.1371/journal.pone.0008697

    PubMed Central  PubMed  Google Scholar 

  90. Wiklund ED, Kjems J, Clark SJ (2010) Epigenetic architecture and miRNA: reciprocal regulators. Epigenomics 2(6):823–840. doi:10.2217/epi.10.51

    CAS  PubMed  Google Scholar 

  91. Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21(4):275–288. doi:10.3109/15376516.2011.562671

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kalin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835. doi:10.1038/nn.3113

    CAS  PubMed  Google Scholar 

  93. Wang X, Cao L, Wang Y, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3(5):955–960. doi:10.3892/ol.2012.609

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884. doi:10.1073/pnas.0803230105

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A, Hidalgo M, Goggins M (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7(7):1146–1156

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322. doi:10.1007/s00428-010-1030-5

    PubMed  Google Scholar 

  97. Nelson PT, Wang WX (2010) MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21(1):75–79. doi:10.3233/JAD-2010-091603

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9(3):293–301. doi:10.1159/000186051

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao DZ, Huang MY, Hou JH, Wu QL, Zeng MS, Huang WL, Zeng YX, Shao JY (2011) miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 71(10):3552–3562. doi:10.1158/0008-5472.CAN-10-2435

    CAS  PubMed  Google Scholar 

  100. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18(3):297–300. doi:10.1097/WNR.0b013e3280148e8b

    CAS  PubMed  Google Scholar 

  101. Cogswell JPWJ, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    CAS  PubMed  Google Scholar 

  102. Pogue AI, Cui JG, Li YY, Zhao Y, Culicchia F, Lukiw WJ (2010) Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 476(1):18–22. doi:10.1016/j.neulet.2010.03.054

    CAS  PubMed  Google Scholar 

  103. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23(11):1876–1884. doi:10.1210/me.2009-0117

    CAS  PubMed  Google Scholar 

  104. Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17(10):548–555. doi:10.1016/j.molmed.2011.06.009

    CAS  PubMed  Google Scholar 

  105. Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008) MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet 17(8):1192–1199. doi:10.1093/hmg/ddn011

    CAS  PubMed  Google Scholar 

  106. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  107. Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227(1):172–179. doi:10.1016/j.expneurol.2010.10.012

    CAS  PubMed  Google Scholar 

  108. Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromolecular Med 11(3):183–199. doi:10.1007/s12017-009-8063-4

    CAS  PubMed  Google Scholar 

  109. Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ (2013) Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6:26. doi:10.1186/1756-6606-6-26

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Jiang M, Xiang Y, Wang D, Gao J, Liu D, Liu Y, Liu S, Zheng D (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11(1):29–40. doi:10.1111/j.1474-9726.2011.00757.x

    CAS  PubMed  Google Scholar 

  111. Sun Z, Yu JT, Jiang T, Li MM, Tan L, Zhang Q (2013) Genome-wide microRNA profiling of rat hippocampus after status epilepticus induced by amygdala stimulation identifies modulators of neuronal apoptosis. PLoS One 8(10):e78375. doi:10.1371/journal.pone.0078375

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, Tan L (2014) Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep 4:4734. doi:10.1038/srep04734

    PubMed Central  PubMed  Google Scholar 

  113. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of MicroRNAs in young stroke patients. PLoS One 4(11):e7689. doi:10.1371/journal.pone.0007689

    PubMed Central  PubMed  Google Scholar 

  114. Tan L, Yu JT, Tan MS, Liu QY, Wang HF, Zhang W, Jiang T (2014) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40(4):1017–1027. doi:10.3233/JAD-132144

    CAS  PubMed  Google Scholar 

  115. Sheinerman KS, Tsivinsky VG, Abdullah L, Crawford F, Umansky SR (2013) Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY) 5(12):925–938

    CAS  Google Scholar 

  116. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263–274

    PubMed Central  PubMed  Google Scholar 

  117. Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39(2):253–259. doi:10.3233/JAD-130932

    CAS  PubMed  Google Scholar 

  118. Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinsons disease. J Biotechnol 152(3):96–101. doi:10.1016/j.jbiotec.2011.01.023

    CAS  PubMed  Google Scholar 

  119. Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi:10.3389/fnmol.2013.00010

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ, Oliveira SA (2011) Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 6(10):e25443. doi:10.1371/journal.pone.0025443

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20(11):2225–2237. doi:10.1093/hmg/ddr111

    CAS  PubMed  Google Scholar 

  122. De Felice B, Guida M, Coppola C, De Mieri G, Cotrufo R (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508(1):35–40. doi:10.1016/j.gene.2012.07.058

    PubMed  Google Scholar 

  123. Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9(2):e89065. doi:10.1371/journal.pone.0089065

    PubMed Central  PubMed  Google Scholar 

  124. Zhang Y, Friedlander RM (2011) Using non-coding small RNAs to develop therapies for Huntington’s disease. Gene Ther 18(12):1139–1149. doi:10.1038/gt.2011.170

    CAS  PubMed  Google Scholar 

  125. Friedlander MR, Lizano E, Houben AJ, Bezdan D, Banez-Coronel M, Kudla G, Mateu-Huertas E, Kagerbauer B, Gonzalez J, Chen KC, Leproust EM, Marti E, Estivill X (2014) Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15(4):R57. doi:10.1186/gb-2014-15-4-r57

    PubMed Central  PubMed  Google Scholar 

  126. Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 9(5):e94839. doi:10.1371/journal.pone.0094839

    PubMed Central  PubMed  Google Scholar 

  127. Ishtiaq M, Campos-Melo D, Volkening K, Strong MJ (2014) Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS One 9(1):e85653. doi:10.1371/journal.pone.0085653

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (81000544, 81171209, 81371406), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001), and the Shandong Provincial Outstanding Medical Academic Professional Program.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Yu, JT. & Tan, L. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Mol Neurobiol 51, 1249–1262 (2015). https://doi.org/10.1007/s12035-014-8803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8803-9

Keywords

Navigation