Skip to main content
Log in

Potential Effect of S-Nitrosylated Protein Disulfide Isomerase on Mutant SOD1 Aggregation and Neuronal Cell Death in Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aggregation of misfolded protein and resultant intracellular inclusion body formation are common hallmarks of mutant superoxide dismutase (mSOD1)-linked familial amyotrophic lateral sclerosis (FALS) and have been associated with the selective neuronal death. Protein disulfide isomerase (PDI) represents a family of enzymatic chaperones that can fold nascent and aberrant proteins in the endoplasmic reticulum (ER) lumen. Recently, our group found that S-nitrosylated PDI could contribute to protein misfolding and subsequent neuronal cell death. However, the exact role of PDI in the pathogenesis of ALS remains unclear. In this study, we propose that PDI attenuates aggregation of mutant/misfolded SOD1 and resultant neurotoxicity associated with ER stress. ER stress resulting in PDI dysfunction therefore provides a mechanistic link between deficits in molecular chaperones, accumulation of misfolded proteins, and neuronal death in neurodegenerative diseases. In contrast, S-nitrosylation of PDI inhibits its activity, increases mSOD1 aggregation, and increases neuronal cell death. Specifically, our data show that S-nitrosylation abrogates PDI-mediated attenuation of neuronal cell death triggered by thapsigargin. Biotin switch assays demonstrate S-nitrosylated PDI both in the spinal cords of SOD1 (G93A) mice and human patients with sporadic ALS. Therefore, denitrosylation of PDI may have therapeutic implications. Taken together, our results suggest a novel strategy involving PDI as a therapy to prevent mSOD1 aggregation and neuronal degeneration. Moreover, the data demonstrate that inactivation of PDI by S-nitrosylation occurs in both mSOD1-linked and sporadic forms of ALS in humans as well as mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

References

  1. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    CAS  PubMed  Google Scholar 

  2. Matsumoto A, Okada Y, Nakamichi M, Nakamura M, Toyama Y, Sobue G, Nagai M, Aoki M, Itoyama Y, Okano H (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res 83:119–133

    Article  CAS  PubMed  Google Scholar 

  3. Tripathi VB, Al-Chalabi A (2008) Molecular insights and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 7:11–19

    Article  CAS  PubMed  Google Scholar 

  4. Muyderman H, Hutson PG, Matusica D, Rogers ML, Rush RA (2009) The human G93A-superoxide dismutase-1 mutation, mitochondrial glutathione and apoptotic cell death. Neurochem Res 34:1847–1856

    Article  CAS  PubMed  Google Scholar 

  5. Lowe J (1994) New pathological findings in amyotrophic lateral sclerosis. J Neurol Sci 124(Suppl):38–51

    Article  PubMed  Google Scholar 

  6. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  7. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  Google Scholar 

  8. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  CAS  PubMed  Google Scholar 

  9. Smith BN, Newhouse S, Shatunov A et al (2013) The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder. Eur J Hum Genet 21:102–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Deng HX, Chen W, Hong ST et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  12. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–9219

    Article  CAS  PubMed  Google Scholar 

  13. Hart PJ (2006) Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr Opin Chem Biol 10:131–138

    Article  CAS  PubMed  Google Scholar 

  14. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  CAS  PubMed  Google Scholar 

  15. Kim HT, Russell RL, Raina AK, Harris PL, Siedlak SL, Zhu X, Petersen RB, Shimohama S, Smith MA, Perry G (2000) Protein disulfide isomerase in Alzheimer disease. Antioxid Redox Signal 2:485–489

    Article  CAS  PubMed  Google Scholar 

  16. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci U S A 104:18742–18747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    Article  CAS  PubMed  Google Scholar 

  18. Cho DH, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67:3435–3447

    Article  CAS  PubMed  Google Scholar 

  19. Honjo Y, Ito H, Horibe T, Takahashi R, Kawakami K (2010) Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 1349:90–96

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10:573–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C, Dong XP (2012) Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 7:e38221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS, Horne MK (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165

    Article  CAS  PubMed  Google Scholar 

  23. Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407

    Article  CAS  PubMed  Google Scholar 

  24. Conn KJ, Gao W, McKee A, Lan MS, Ullman MD, Eisenhauer PB, Fine RE, Wells JM (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res 1022:164–172

    Article  CAS  PubMed  Google Scholar 

  25. Furukawa Y, O'Halloran TV (2006) Posttranslational modifications in Cu, Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal 8:847–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chattopadhyay M, Valentine JS (2009) Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signal 11:1603–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ (2009) Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 234:1140–1154

    Article  CAS  Google Scholar 

  28. Furukawa Y, Torres AS, O'Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, Sosunov AA, McKhann GM 2nd, Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103:6025–6030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yang YS, Harel NY, Strittmatter SM (2009) Reticulon-4A (Nogo-A) redistributes protein disulfide isomerase to protect mice from SOD1-dependent amyotrophic lateral sclerosis. J Neurosci 29:13850–13859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR (2010) Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 6:900–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Walker AK, Farg MA, Bye CR, McLean CA, Horne MK, Atkin JD (2010) Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133:105–116

    Article  PubMed  Google Scholar 

  34. Ko HS, Uehara T, Nomura Y (2002) Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 277:35386–35392

    Article  CAS  PubMed  Google Scholar 

  35. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662

    Article  CAS  PubMed  Google Scholar 

  36. Hetz C, Russelakis-Carneiro M, Walchli S, Carboni S, Vial-Knecht E, Maundrell K, Castilla J, Soto C (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25:2793–2802

    Article  CAS  PubMed  Google Scholar 

  37. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  CAS  PubMed  Google Scholar 

  38. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  CAS  PubMed  Google Scholar 

  41. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises Parkin's protective function. Science 304:1328–1331

    Article  CAS  PubMed  Google Scholar 

  42. Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates it E3 ligase activity. Proc Natl Acad Sci U S A 101:10810–10814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Benhar M, Forrester MT, Stamler JS (2006) Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. ACS Chem Biol 1:355–358

    Article  PubMed  Google Scholar 

  44. Nakamura T, Lipton SA (2008) Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal 10:87–101

    Article  CAS  PubMed  Google Scholar 

  45. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Zhang X, Li C, Guan T, Shang H, Cui L, Li XM, Kong J (2013) S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124:45–58

    Article  CAS  PubMed  Google Scholar 

  48. Budd SL, Tenneti L, Lishnak T, Lipton SA (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci U S A 97:6161–6166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Okamoto S, Li Z, Ju C, Scholzke MN, Mathews E, Cui J, Salvesen GS, Bossy-Wetzel E, Lipton SA (2002) Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci U S A 99:3974–3979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ahn SW, Kim JE, Park KS, Choi WJ, Hong YH, Kim SM, Kim SH, Lee KW, Sung JJ (2012) The neuroprotective effect of the GSK-3β inhibitor and influence on the extrinsic apoptosis in the ALS transgenic mice. J Neurol Sci 320:1–5

    Article  CAS  PubMed  Google Scholar 

  51. Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulfide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  CAS  PubMed  Google Scholar 

  52. Inan M, Aryasomayajula D, Sinha J, Meagher MM (2006) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93:771–778

    Article  CAS  PubMed  Google Scholar 

  53. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118

    Article  CAS  PubMed  Google Scholar 

  54. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263

    Article  CAS  PubMed  Google Scholar 

  55. Quan H, Fan G, Wang CC (1995) Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. J Biol Chem 270:17078–17080

    Article  CAS  PubMed  Google Scholar 

  56. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  57. Karala AR, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277:2454–2462

    Article  CAS  PubMed  Google Scholar 

  58. Nagata T, Ilieva H, Murakami T, Shiote M, Narai H, Ohta Y, Hayashi T, Shoji M, Abe K (2007) Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29:767–771

    Article  PubMed  Google Scholar 

  59. Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009) ER stress and un-folded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 39:81–89

    Article  CAS  PubMed  Google Scholar 

  60. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636

    Article  CAS  PubMed  Google Scholar 

  61. Faccenda A, Bonham CA, Vacratsis PO, Zhang X, Mutus B (2010) Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins. J Am Chem Soc 132:11392–11394

    Article  CAS  PubMed  Google Scholar 

  62. Honjo Y, Kaneko S, Ito H, Horibe T, Nagashima M, Nakamura M, Fujita K, Takahashi R, Kusaka H, Kawakami K (2011) Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:444–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0011008). Additional support came in part from NIH grants P01 HD29587, P01 ES016738, and P30 NS076411 (to SAL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Joon Sung or Stuart A. Lipton.

Additional information

Jeon and Nakamura contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

mSOD1 is prone to aggregation and are largely insoluble in detergent. Note that PDI transfection decreased the quantity of mSOD1 protein in the detergent-insoluble fraction. Moc, mock transfection. (JPEG 16 kb)

High resolution image (TIFF 2980 kb)

Supplementary Fig. 2

a, Flow cytometry determine the efficiency of transfection in NSC-34 cells with GFP and pcDNA empty vector, wild-type (WT) SOD1 or mSOD1 (G93A), plus wild-type PDI or mutant (MT) PDI. After 24 hours, cells were harvested and the numbers of GFP positive cells were estimated by flow cytometry. b, When CHX (10 μg/ml) was chased for the indicated period of time, PDI overexpression did not affect the stability of SOD1 protein. c, Wild-type PDI or mPDI did not affect SOD1 mRNA levels in the absence or presence of transfected wild-type SOD1 in NSC-34 cells. The data represent the mean of 3 independent experiments. (JPEG 38 kb)

High resolution image (TIFF 1543 kb)

Supplementary Fig. 3

HEK293A cells transfected with mSOD1 compared to wild-type SOD1 manifest an equal degree of toxicity. PI-positive cells were examined to determine cell death. Cell death was not significantly different in mock-transfected (Moc), wild-type, or mSOD1 (G93A) cells, although there was a trend for transfected cells to manifest increased toxicity. (JPEG 24 kb)

High resolution image (TIFF 4338 kb)

Supplementary Fig. 4

NSC-34 cells transfected with mSOD1 compared to wild-type SOD1 manifest an increased degree of toxicity. PI-positive cells were examined to determine cell death. Cell death was significantly increased in mSOD1 (G93A) compared to mock-transfected (Moc) wild-type cells (values are mean + SEM, n = 3; *P < 0.01). (JPEG 21 kb)

High resolution image (TIFF 4196 kb)

Supplementary Fig. 5

Transfection of NSC-34 cells with mSOD1 (G93A) compared to WT SOD1 leads to a significant increase in cell death induced by 200 μM SNOC (values are mean + SEM, n = 3; *P < 0.01). (JPEG 28 kb)

High resolution image (TIFF 5606 kb)

Supplementary Table 1

The information for human spinal cord samples. PMI: Postmortem interval (From time of death to freezing of the samples) (JPEG 13 kb)

High resolution image (TIFF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, G.S., Nakamura, T., Lee, JS. et al. Potential Effect of S-Nitrosylated Protein Disulfide Isomerase on Mutant SOD1 Aggregation and Neuronal Cell Death in Amyotrophic Lateral Sclerosis. Mol Neurobiol 49, 796–807 (2014). https://doi.org/10.1007/s12035-013-8562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8562-z

Keywords

Navigation