Skip to main content

Advertisement

Log in

The “Dying-Back” Phenomenon of Motor Neurons in ALS

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a lethal disease, characterized by progressive death of motor neurons with unknown etiology. Evidence from animal models indicates that neuronal dysfunction precedes the clinical phase of the disease. However, in parallel extensive nerve sprouting and synaptic remodeling as part of a compensatory reinnervation processes and possibly also of motor neurons pathology was demonstrated. Therefore, the weakness in muscle groups will not be clinically apparent until a large proportion of motor units are lost. This motor unit loss and associated muscle function which precedes the death of motor neurons may resemble the “die-back” phenomena. Studies indicated that in the early stages the nerve terminals and motor neuron junctions are partially degraded while the cell bodies in the spinal cord are mostly intact. Treatments to rescue motor neurons according to “dying-forward” model of motor neuron pathology in ALS have shown only limited success in SOD1G93A transgenic mice as well as in humans. If cell body degeneration is late compared with axonal degeneration, early intervention could potentially prevent loss of motor neurons. Therefore, it should be considered, according to the dying back hypothesis, to focus on motor neurons terminals in order to delay or prevent the progressive degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Acsadi G, Anguelov R, Yang H et al (2002) Increased survival and function of SOD1 mice after Glial cell- derived neurotrophic factor gene therapy. Hum Gene Ther 13:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Aguilar GJ, Laguna AE, Fergani A et al (2007) Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 101:1153–60

    Article  Google Scholar 

  • Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Calvaresi N, Chiveri L et al (2001) Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J Neurol Sci 191:25–33

    Article  CAS  PubMed  Google Scholar 

  • Bruijn L, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25:532–537

    Article  CAS  PubMed  Google Scholar 

  • Crone SA, Lee KF (2002) The bound leading the bound: target derived receptors act as guidance cues. Neuron 36:333–335

    Article  CAS  PubMed  Google Scholar 

  • De Winter F, Vo T, Stam FJ et al (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32:102–117

    Article  PubMed  Google Scholar 

  • Deshpande DM, Kim YS, Martinez T et al (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60:32–44

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolny G, Giacinti C, Pelosi L et al (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168:193–199

    Article  CAS  PubMed  Google Scholar 

  • Durand J, Amendola J, Bories C, Lamotte d’Incamps B (2006) Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris 99:211–220

    Article  PubMed  Google Scholar 

  • Feinberg DM, Preston DC, Shefner JM, Logigian EL (1999) Amplitude dependent slowing of conduction in amyotrophic lateral sclerosis and polyneuropathy. Muscle Nerve 22:1646–1651

    Article  Google Scholar 

  • Felice KJ (1997) A longitudinal study comparing thenar motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve 20(2):179–185

    Article  CAS  PubMed  Google Scholar 

  • Fischer LR, Culver DG, Tennant P et al (2003) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240

    Article  Google Scholar 

  • Fischer LR, Culver DG, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidance in mice and man. Exp Neurol 185(2):232–240

    Google Scholar 

  • Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20:2534–2542

    CAS  PubMed  Google Scholar 

  • Fryer HJ, Wolf DH, Knox RJ et al (2000) Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultured embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 74:582–595

    Article  CAS  PubMed  Google Scholar 

  • Gordon T, Thomas CK, Munson JB, Stein RB (2004) The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 89:645–661

    Article  Google Scholar 

  • Gruzman A, Wood WL, Alpert E et al (2007) Common molecular signature in SOD-1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:12524–9

    Article  CAS  PubMed  Google Scholar 

  • Hayworth CR, Gonzales-Lima F (2009) Pre-symptomatic detection of chronic motor deficits genotype prediction in congenic B6.SOD1G93A ALS mouse model. Neuroscience 164:975–85

    Article  CAS  PubMed  Google Scholar 

  • Hegedus J, Putman CT, Gordon T (2007) Time course of preferential motor unit loss in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28:154–164

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of the motor neuron pool and its inputs in the nervous system: motor control part 1, sect. 1. vol. 2, Brooks, VB (ed). American Physiology Society, Washington, DC. pp 345–442.

  • Hu P, Kalb RG (2003) BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 84:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Ilieva EV, Ayala V, Jové M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–23

    Article  PubMed  Google Scholar 

  • Jokic N, Gonzales de Aguilar JL, Pardat PF et al (2005) Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity. Ann Neurol 57:553–556

    Article  CAS  PubMed  Google Scholar 

  • Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neuroscience 18:3241–3250

    CAS  Google Scholar 

  • Lambrechts D, Carmeliet P (2006) VEGF in the neurovasculat interface: therapeutic implication for motor neuron disease. Biochim Biophys Acta 1762:1109–1121

    CAS  PubMed  Google Scholar 

  • LaMonte BH, Wallace KE, Holloway BA et al (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727

    Article  CAS  PubMed  Google Scholar 

  • Lev N, Ickowicz D, Barhum Y, Melamed E, Offen D (2009) DJ-1 changes in G93A-SOD1 transgenic mice: Implications for oxidative stress in ALS. J Mol Neurosci 38:94–102

    Article  CAS  PubMed  Google Scholar 

  • Li W, Brakefield D, Pan Y, Hunter D, Myckatyn TM, Parsadanian A (2007) Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp Neurol 203:457–471

    Article  CAS  PubMed  Google Scholar 

  • Lu l, Zheng L, Viera L et al (2007) Mutant Cu/Zn- superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 27:7929–7938

    Article  CAS  PubMed  Google Scholar 

  • Mohajeri H, Figlewicz D, Bohn M (1999) Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 10:1853–1866

    Article  CAS  PubMed  Google Scholar 

  • Mousavi K, Parrav D, Lasmin B (2004) BDNF rescue myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am J Physiol Cell Physiol 287:C22–9

    Article  CAS  PubMed  Google Scholar 

  • Musarò A, McCullagh K, Paul A et al (2001) Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  Google Scholar 

  • Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G (2009) Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. J Mol Neurosci 38:85–93

    Article  CAS  PubMed  Google Scholar 

  • Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the hypoxia- response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Article  CAS  PubMed  Google Scholar 

  • Ozdinler H, Macklis J (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371–1381

    Article  PubMed  Google Scholar 

  • Park KHJ, Vincent I (2008) Presymptomatic biochemical changes in hind limb muscle of G93A human Cu/Zn superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Biochim Biophys acta 1782:462–468

    CAS  PubMed  Google Scholar 

  • Parkhouse WS, Cunningham L, Mcfee I et al (2008) Neuromuscular dysfunction in the mutant superoxide dismutase mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:24–34

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobil 19:263–274

    Article  CAS  Google Scholar 

  • Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  • Rabinovsky ED, Gelir E, Gelir S et al (2003) Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J 17:53–55

    CAS  PubMed  Google Scholar 

  • Rotestein JD, Jin L, Dykes-Hoberg M, Kunel RW (1993) Chronic inhibition of gloutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    Article  Google Scholar 

  • Sagot Y, Vejsada R, Kato A (1997) Clinical and molecular aspects of motoneuron diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein. Trends Pharmacol Sci 18:330–337

    CAS  PubMed  Google Scholar 

  • Sakowski SA, Schuyler AD, Feldman EL (2009) Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:63–73

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ERE, Pasterkamp RJ, Van den Berg LH (2009) Axon guidance proteins: novel therapeutic targets for ALS? Prog Neurobiol 88:286–301

    Article  CAS  PubMed  Google Scholar 

  • Séverine B, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  Google Scholar 

  • Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neuron disease. J Neurol Neurosurgery Psychiatry 76:1046–1057

    Article  CAS  Google Scholar 

  • Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motornerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39:203–216

    Article  CAS  PubMed  Google Scholar 

  • Storkebaum E, Lambrechts D, Dewerchin M et al (2005) Treatment of motoneuron degeneration by intracerbroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92

    Article  CAS  PubMed  Google Scholar 

  • Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD-1-mediated familial ALS. Prog Neurobiol 85:94–134

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mao XO, Xie L et al (2007) Vascular endothelial growth factor overexpression delays neurodegeneraion and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27:304–307

    Article  PubMed  Google Scholar 

  • Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS- linked SOD1 mutant to motor neurons. Nat Neurosci 2:50–56

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee TM (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Skold MK, Li J, Nennesmo I, Fadeel B, Henter JI (2007) VEGF reduces astryogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochem Biophys Res Commun 363:989–993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed by Michal Dadon in partial fulfillment of the requirements for a Ph.D. degree. This work was supported, in part, by The Devora Eleonora Kirshman Fund for Research of Parkinson’s Disease, Tel Aviv University and by the Norma and Alan Aufzein Chair of Research of Parkinson’s Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Offen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadon-Nachum, M., Melamed, E. & Offen, D. The “Dying-Back” Phenomenon of Motor Neurons in ALS. J Mol Neurosci 43, 470–477 (2011). https://doi.org/10.1007/s12031-010-9467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9467-1

Keywords

Navigation