Skip to main content

Advertisement

Log in

Role of Oxidative Stress in the Worsening of Neurologic Wilson Disease Following Chelating Therapy

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Patients with neurologic Wilson disease (NWD) may worsen on treatment, but there is no study evaluating the role of oxidative stress. We report the role of plasma glutathione (GSH), total antioxidant capacity (TAC) and malondialdehyde (MDA) in the worsening of NWD following treatment. Fifty-one treatment-naïve NWD patients were subjected to detailed clinical evaluation. The severity of NWD was noted, and dystonia was measured by Burke–Fahn–Marsden (BFM) score. Their hematological, serum chemistry, ultrasound abdomen and cranial MRI changes were noted. Plasma GSH, TAC and MDA, serum free copper (Cu) and 24-h urinary Cu were measured at admission and at 3 and 6 months after treatment. The patients were considered worsened if there was one or more grade deterioration in severity scale, >10 % deterioration in BFM score or appearance of new neurologic signs. The median age of the patients was 11 (5–37) years, and 12 were females. Following treatment, 25 patients improved, 12 worsened, and 14 had stationary course. The worsened group at 3 months had lower GSH (1.99 ± 0.17 vs. 2.30 ± 0.30 mg/dl; P = 0.004) and TAC (1.59 ± 0.12 vs. 1.82 ± 0.17 mmol Trolox equivalent/L; P = 0.001) and higher MDA (5.24 ± 0.22 vs. 4.34 ± 0.46 nmol/ml; P < 0.001) levels compared to the improved group. These changes were associated with increased serum free Cu (41.81 ± 3.31 vs. 35.62 ± 6.40 µg/dl; P = 0.02) and 24-h urinary Cu (206.42 ± 41.61 vs. 121.99 ± 23.72 µg/24 h; P < 0.001) in the worsened compared to the improved group. All the patients having worsening were on penicillamine. Worsening following chelating treatment in NWD may be due to oxidative stress which is induced by increased serum free Cu. These results may have future therapeutic implication and needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BFM:

Burke–Fahn–Marsden

CNS:

Central nervous system

Cu:

Copper

GSH:

Glutathione

LPO:

Lipid peroxidation

MRI:

Magnetic resonance imaging

MDA:

Malondialdehyde

NWD:

Neurologic Wilson disease

TAC:

Total antioxidant capacity

References

  • Brewer, G. J., Askari, F., Dick, R. B., Sitterly, J., Fink, J. K., Carlson, M., et al. (2009). Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Translational Research, 154(2), 70–77. doi:10.1016/j.trsl.2009.05.002.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., Askari, F., Lorincz, M. T., Carlson, M., Schilsky, M., Kluin, K. J., et al. (2006). Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Archives of Neurology, 63(4), 521–527. doi:10.1001/archneur.63.4.521.

    Article  PubMed  Google Scholar 

  • Brewer, G. J., Fink, J. K., & Hedera, P. (1999). Diagnosis and treatment of Wilson’s disease. Seminars in Neurology, 19(3), 261–270. doi:10.1055/s-2008-1040842.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., Hedera, P., Kluin, K. J., Carlson, M., Askari, F., Dick, R. B., et al. (2003). Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Archives of Neurology, 60(3), 379–385.

    Article  PubMed  Google Scholar 

  • Brewer, G. J., Terry, C. A., Aisen, A. M., & Hill, G. M. (1987). Worsening of neurologic syndrome in patients with Wilson’s disease with initial penicillamine therapy. Archives of Neurology, 44(5), 490–493.

    Article  CAS  PubMed  Google Scholar 

  • Bruha, R., Marecek, Z., Martasek, P., Nevsimalova, S., Petrtyl, J., Urbanek, P., et al. (2009). Wilson’s disease. Cas Lek Cesk, 148(11), 544–548.

    CAS  PubMed  Google Scholar 

  • Bruha, R., Marecek, Z., Pospisilova, L., Nevsimalova, S., Vitek, L., Martasek, P., et al. (2011). Long-term follow-up of Wilson disease: Natural history, treatment, mutations analysis and phenotypic correlation. Liver International, 31(1), 83–91. doi:10.1111/j.1478-3231.2010.02354.x.

    Article  CAS  PubMed  Google Scholar 

  • Bruha, R., Vitek, L., Marecek, Z., Pospisilova, L., Nevsimalova, S., Martasek, P., et al. (2012). Decreased serum antioxidant capacity in patients with Wilson disease is associated with neurological symptoms. Journal of Inherited Metabolic Disease, 35(3), 541–548. doi:10.1007/s10545-011-9422-5.

    Article  CAS  PubMed  Google Scholar 

  • Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R., & Cox, D. W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics, 5(4), 327–337. doi:10.1038/ng1293-327.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D. B., Feng, L., Lin, X. P., Zhang, W., Li, F. R., Liang, X. L., et al. (2012). Penicillamine increases free copper and enhances oxidative stress in the brain of toxic milk mice. PLoS One, 7(5), e37709. doi:10.1371/journal.pone.0037709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, Y., Vartiainen, N. E., Ying, W., Chan, P. H., Koistinaho, J., & Swanson, R. A. (2001). Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. Journal of Neurochemistry, 77(6), 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  • Choi, B. S., & Zheng, W. (2009). Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Research, 1248, 14–21. doi:10.1016/j.brainres.2008.10.056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crum, R. M., Anthony, J. C., Bassett, S. S., & Folstein, M. F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA, 269(18), 2386–2391.

    Article  CAS  PubMed  Google Scholar 

  • Das, S. K., & Ray, K. (2006). Wilson’s disease: An update. Nature Clinical Practice Neurology, 2(9), 482–493. doi:10.1038/ncpneuro0291.

    Article  PubMed  Google Scholar 

  • Desagher, S., Glowinski, J., & Premont, J. (1996). Astrocytes protect neurons from hydrogen peroxide toxicity. Journal of Neuroscience, 16(8), 2553–2562.

    CAS  PubMed  Google Scholar 

  • Dringen, R., Scheiber, I. F., & Mercer, J. F. (2013). Copper metabolism of astrocytes. Frontiers in Aging Neuroscience, 5, 9. doi:10.3389/fnagi.2013.00009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1–2), 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, G., Prayer, L., Oder, W., Ferenci, P., Madl, C., Knoflach, P., et al. (1991). Comparison of functional and structural brain disturbances in Wilson’s disease. Neurology, 41(2 (Pt 1)), 272–276.

    Article  CAS  PubMed  Google Scholar 

  • Gromadzka, G., Karpinska, A., Przybylkowski, A., Litwin, T., Wierzchowska-Ciok, A., Dziezyc, K., et al. (2014). Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease. BioMetals, 27(1), 207–215. doi:10.1007/s10534-013-9694-3.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs and Aging, 18(9), 685–716.

    Article  CAS  PubMed  Google Scholar 

  • Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6), 515–540.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, B., Kapoor, S., Schilsky, M. L., & Gupta, S. (2009). Bile salt-induced pro-oxidant liver damage promotes transplanted cell proliferation for correcting Wilson disease in the Long-Evans Cinnamon rat model. Hepatology, 49(5), 1616–1624. doi:10.1002/hep.22792.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalita, J., Kumar, V., Chandra, S., Kumar, B., & Misra, U. K. (2014a). Worsening of Wilson disease following penicillamine therapy. European Neurology, 71(3–4), 126–131. doi:10.1159/000355276.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, J., Kumar, V., Misra, U. K., Ranjan, A., Khan, H., & Konwar, R. (2014b). A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. Journal of Neuroimmunology, 274(1–2), 141–148. doi:10.1016/j.jneuroim.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, J., Somarajan, B. I., Misra, U. K., & Mittal, B. (2010). R778L, H1069Q, and I1102T mutation study in neurologic Wilson disease. Neurology India, 58(4), 627–630. doi:10.4103/0028-3886.68678.

    Article  PubMed  Google Scholar 

  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krystkowiak, P., du Montcel, S. T., Vercueil, L., Houeto, J. L., Lagrange, C., Cornu, P., et al. (2007). Reliability of the Burke–Fahn–Marsden scale in a multicenter trial for dystonia. Movement Disorders, 22(5), 685–689. doi:10.1002/mds.21392.

    Article  PubMed  Google Scholar 

  • Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A. S., & Cooper, A. J. (1994). Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: Evidence that astrocytes play an important role in antioxidative processes in the brain. Journal of Neurochemistry, 62(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Mattie, M. D., & Freedman, J. H. (2001). Protective effects of aspirin and vitamin E (alpha-tocopherol) against copper- and cadmium-induced toxicity. Biochemical and Biophysics Research Communications, 285(4), 921–925. doi:10.1006/bbrc.2001.5259.

    Article  CAS  Google Scholar 

  • Nagasaka, H., Inoue, I., Inui, A., Komatsu, H., Sogo, T., Murayama, K., et al. (2006). Relationship between oxidative stress and antioxidant systems in the liver of patients with Wilson disease: Hepatic manifestation in Wilson disease as a consequence of augmented oxidative stress. Pediatric Research, 60(4), 472–477. doi:10.1203/01.pdr.0000238341.12229.d3.

    Article  CAS  PubMed  Google Scholar 

  • Ozcelik, D., & Uzun, H. (2009). Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biological Trace Element Research, 127(1), 45–52. doi:10.1007/s12011-008-8219-3.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan, A., Kalita, J., Kumar, V., & Misra, U. K. (2015). MRI and oxidative stress markers in neurological worsening of Wilson disease following penicillamine. Neurotoxicology, 49, 45–49. doi:10.1016/j.neuro.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. V., Rao, K. V., & Norenberg, M. D. (2008). The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Laboratory Investigation, 88(8), 816–830. doi:10.1038/labinvest.2008.49.

    Article  CAS  PubMed  Google Scholar 

  • Reed, T. T. (2011). Lipid peroxidation and neurodegenerative disease. Free Radical Biology and Medicine, 51(7), 1302–1319. doi:10.1016/j.freeradbiomed.2011.06.027.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, E. A., Schilsky, M. L., & American Association for Study of Liver, D. (2008). Diagnosis and treatment of Wilson disease: An update. Hepatology, 47(6), 2089–2111. doi:10.1002/hep.22261.

    Article  CAS  PubMed  Google Scholar 

  • Samuele, A., Mangiagalli, A., Armentero, M. T., Fancellu, R., Bazzini, E., Vairetti, M., et al. (2005). Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson’s disease. Biochimica et Biophysica Acta, 1741(3), 325–330. doi:10.1016/j.bbadis.2005.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Scheiber, I. F., & Dringen, R. (2013). Astrocyte functions in the copper homeostasis of the brain. Neurochemistry International, 62(5), 556–565. doi:10.1016/j.neuint.2012.08.017.

    Article  CAS  PubMed  Google Scholar 

  • Schosinsky, K. H., Lehmann, H. P., & Beeler, M. F. (1974). Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clinical Chemistry, 20(12), 1556–1563.

    CAS  PubMed  Google Scholar 

  • Sokol, R. J., Twedt, D., McKim, J. M, Jr, Devereaux, M. W., Karrer, F. M., Kam, I., et al. (1994). Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology, 107(6), 1788–1798.

    CAS  PubMed  Google Scholar 

  • Steinebach, O. M., & Wolterbeek, H. T. (1994). Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology, 92(1–3), 75–90.

    Article  CAS  PubMed  Google Scholar 

  • Stuerenburg, H. J. (2000). CSF copper concentrations, blood–brain barrier function, and coeruloplasmin synthesis during the treatment of Wilson’s disease. J Neural Transm, 107(3), 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Summer, K. H., & Eisenburg, J. (1985). Low content of hepatic reduced glutathione in patients with Wilson’s disease. Biochemical Medicine, 34(1), 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G. R., Forbes, J. R., Roberts, E. A., Walshe, J. M., & Cox, D. W. (1995). The Wilson disease gene: Spectrum of mutations and their consequences. Nature Genetics, 9(2), 210–217. doi:10.1038/ng0295-210.

    Article  CAS  PubMed  Google Scholar 

  • Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502–522.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. W., Liu, J. X., Hou, H. M., Chen, D. B., Feng, L., Wu, C., et al. (2015). Effects of tetrathiomolybdate and penicillamine on brain hydroxyl radical and free copper levels: A microdialysis study in vivo. Biochemical and Biophysics Research Communications, 458(1), 82–85. doi:10.1016/j.bbrc.2015.01.071.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Mr. Deepak for secretarial help.

Funding

This work was funded by Intramural grant from the Sanjay Gandhi Post Graduate Medical Sciences, Lucknow, India (39:287), and Mr. Vijay Kumar received fellowship from Indian Council of Medical research, Government of India (ICMR-JRF, 3/1/3/JRF-2009/MPD 31381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayantee Kalita.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Ethics approval

The research has been approved by the Institutional Ethics Committee, SGPGIMS, Lucknow (Ethic No A-03:PGI/IMP/IEC/56/19.08.2011).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Error bar diagram shows plasma glutathione (GSH), total antioxidant capacity (TAC) and malondialdehyde (MDA) levels of the worsened Wilson disease patients at baseline, the time of worsening (3 months) and at stabilization (6 months) after stopping penicillamine. Eight patients received zinc and four received zinc and trientine (TIFF 651 kb)

Supplementary material 2 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J., Kumar, V., Ranjan, A. et al. Role of Oxidative Stress in the Worsening of Neurologic Wilson Disease Following Chelating Therapy. Neuromol Med 17, 364–372 (2015). https://doi.org/10.1007/s12017-015-8364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8364-8

Keywords

Navigation