Skip to main content
Log in

Levalbuterol versus albuterol

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Albuterol has been used for more than 40 years to treat acute asthma exacerbations as a racemic mixture of isomers: the active form, (R)-albuterol, or levalbuterol, and (S)-albuterol, classically considered inert. The single-isomer formulation, levalbuterol, has been synthesized recently and used therapeutically when the racemate is deemed less desirable. Basic investigations indicate that racemic albuterol and levalbuterol can produce effects that favor asthma remediation, including corticosteroid amplification and reduction of inflammatory mediators; in contrast, (S)-albuterol produces opposite effects. With inhalation of racemic albuterol, circulating (S)-albuterol persists 12 times longer than levalbuterol, suggesting potential for paradoxical effects observed clinically. Although mainly consistent with basic findings, clinical studies suggest no overwhelming superiority of levalbuterol over racemic albuterol; however, levalbuterol’s effects may be greatest in moderate to severe asthma patients, especially with racemic albuterol overuse. Recent adoption of the hydrofluoroalkane formulation has narrowed the cost gap between levalbuterol and racemic albuterol metered-dose inhalers, but it remains for the nebulized formulations. Thus, physician selection of these drugs has remained dependent on experience, pharmaceutical knowledge, and established prescribing habits combined with cost factors, formulary structures, and availability, such that racemic albuterol is still used significantly compared with levalbuterol to treat acute asthma exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Busse W, Banks-Schlegel S, Noel P, et al.: Future research directions in asthma: an NHLBI Working Group report. Am J Respir Crit Care Med 2004, 170:683–690.

    Article  PubMed  Google Scholar 

  2. Fuhlbrigge AL, Adams RJ, Guilbert TW, et al.: The burden of asthma in the United States: level and distribution are dependent on interpretation of the national asthma education and prevention program guidelines. Am J Respir Crit Care Med 2002, 166:1044–1049.

    Article  PubMed  Google Scholar 

  3. Gilberg K, Laouri M, Wade S, Isonaka S: Analysis of medication use patterns: apparent overuse of antibiotics and underuse of prescription drugs for asthma, depression, and CHF. J Manag Care Pharm 2003, 9:232–237.

    PubMed  Google Scholar 

  4. Reed S, Diggle S, Cushley MJ, et al.: Assessment and management of asthma in an accident and emergency department. Thorax 1985, 40:897–902.

    Article  PubMed  CAS  Google Scholar 

  5. Penn RB, Frielle T, McCullough JR, et al.: Comparison of R-, S-, and RS-albuterol interaction with human beta 1- and beta 2-adrenergic receptors. Clin Rev Allergy Immunol 1996, 14:37–45.

    Article  PubMed  CAS  Google Scholar 

  6. Cockcroft DW, McParland CP, Britto SA, et al.: Regular inhaled salbutamol and airway responsiveness to allergen. Lancet 1993, 342:833–837.

    Article  PubMed  CAS  Google Scholar 

  7. Spitzer WO, Suissa S, Ernst P, et al.: The use of beta-agonists and the risk of death and near death from asthma. N Engl J Med 1992, 326:501–506.

    PubMed  CAS  Google Scholar 

  8. Abramson MJ, Bailey MJ, Couper FJ, et al.: Are asthma medications and management related to deaths from asthma? Am J Respir Crit Care Med 2001, 163:12–18.

    PubMed  CAS  Google Scholar 

  9. Nowak RM, Emerman CL, Schaefer K, et al.: Levalbuterol compared with racemic albuterol in the treatment of acute asthma: results of a pilot study. Am J Emerg Med 2004, 22:29–36.

    Article  PubMed  Google Scholar 

  10. Boulton DW, Fawcett JP: Enantioselective disposition of salbutamol in man following oral and intravenous administration. Br J Clin Pharmacol 1996, 41:35–40.

    Article  PubMed  CAS  Google Scholar 

  11. Boulton DW, Fawcett JP: The pharmacokinetics of levosalbutamol: what are the clinical implications? Clin Pharmacokinet 2001, 40:23–40.

    Article  PubMed  CAS  Google Scholar 

  12. Morgan DJ, Paull JD, Richmond BH, et al.: Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. Br J Clin Pharmacol 1986, 22:587–593.

    PubMed  CAS  Google Scholar 

  13. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al.: Pharmacokinetic and pharmacodynamic characteristics and safety of inhaled albuterol enantiomers in healthy volunteers. J Clin Pharmacol 1998, 38:1096–1106.

    PubMed  CAS  Google Scholar 

  14. Naidu Sjosward K, Josefsson M, Ahlner J, et al.: Metabolism of salbutamol differs between asthmatic patients and healthy volunteers. Pharmacol Toxicol 2003, 92:27–32.

    Article  PubMed  Google Scholar 

  15. Eaton EA, Walle UK, Wilson HM, et al.: Stereoselective sulphate conjugation of salbutamol by human lung and bronchial epithelial cells. Br J Clin Pharmacol 1996, 41:201–206.

    Article  PubMed  CAS  Google Scholar 

  16. Lipworth BJ, Clark DJ, Koch P, Arbeeny C: Pharmacokinetics and extrapulmonary beta 2 adrenoceptor activity of nebulised racemic salbutamol and its R and S isomers in healthy volunteers. Thorax 1997, 52:849–852.

    PubMed  CAS  Google Scholar 

  17. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al.: Pharmacokinetics and pharmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. Pulm Pharmacol Ther 1999, 12:353–362.

    Article  PubMed  CAS  Google Scholar 

  18. Dhand R, Goode M, Reid R, et al.: Preferential pulmonary retention of (S)-albuterol after inhalation of racemic al buterol. Am J Respir Crit Care Med 1999, 160:1136–1141.

    PubMed  CAS  Google Scholar 

  19. Hartley D, Middlemiss D: Absolute configuration of the optical isomers of salbutamol. J Med Chem 1971, 14:995–996.

    Article  PubMed  CAS  Google Scholar 

  20. Page CP, Morley J: Contrasting properties of albuterol stereoisomers. J Allergy Clin Immunol 1999, 104:S31–S41.

    Article  PubMed  CAS  Google Scholar 

  21. Cullum VA, Farmer JB, Jack D, Levy GP: Salbutamol: a new, selective betaadrenoceptive receptor stimulant. Br J Pharmacol 1969, 35:141–151.

    PubMed  CAS  Google Scholar 

  22. Yamaguchi H, McCullough JR: S-albuterol exacerbates calcium responses to carbachol in airway smooth muscle cells. Clin Rev Allergy Immunol 1996, 14:47–55.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang XY, Zhu FX, Olszewski MA, Robinson NE: Effects of enantiomers of beta 2-agonists on ACh release and smooth muscle contraction in the trachea. Am J Physiol 1998, 274:L32–L38.

    PubMed  CAS  Google Scholar 

  24. Johansson F, Rydberg I, Aberg G, Andersson RG: Effects of albuterol enantiomers on in vitro bronchial reactivity. Clin Rev Allergy Immunol 1996, 14:57–64.

    Article  PubMed  CAS  Google Scholar 

  25. Delmotte P, Sanderson MJ: Effects of albuterol isomers on the contraction and Ca2+ signaling of small airways in mouse lung slices. Am J Respir Cell Mol Biol 2008, 38:524–531.

    Article  PubMed  CAS  Google Scholar 

  26. Mitra S, Ugur M, Ugur O, et al.: (S)-Albuterol increases intracellular free calcium by muscarinic receptor activation and a phospholipase C-dependent mechanism in airway smooth muscle. Mol Pharmacol 1998, 53:347–354.

    PubMed  CAS  Google Scholar 

  27. Mazzoni L, Naef R, Chapman ID, Morley J: Hyperresponsiveness of the airways following exposure of guinea-pigs to racemic mixtures and distomers of beta 2-selective sympathomimetics. Pulm Pharmacol 1994, 7:367–376.

    Article  PubMed  CAS  Google Scholar 

  28. Keir S, Page C, Spina D: Bronchial hyperresponsiveness induced by chronic treatment with albuterol: role of sensory nerves. J Allergy Clin Immunol 2002, 110:388–394.

    Article  PubMed  CAS  Google Scholar 

  29. Vargaftig BB: Modifications of experimental bronchopulmonary hyperresponsiveness. Am J Respir Crit Care Med 1997, 156:S97–S102.

    PubMed  CAS  Google Scholar 

  30. Henderson WR Jr, Banerjee ER, Chi EY: Differential effects of (S)- and (R)-enantiomers of albuterol in a mouse asthma model. J Allergy Clin Immunol 2005, 116:332–340.

    Article  PubMed  CAS  Google Scholar 

  31. Agrawal DK, Ariyarathna K, Kelbe PW: (S)-Albuterol activates pro-constrictory and pro-inflammatory pathways in human bronchial smooth muscle cells. J Allergy Clin Immunol 2004, 113:503–510.

    Article  PubMed  CAS  Google Scholar 

  32. Templeton AG, Chapman ID, Chilvers ER, et al.: Effects of S-salbutamol on human isolated bronchus. Pulm Pharmacol Ther 1998, 11:1–6.

    Article  PubMed  CAS  Google Scholar 

  33. Lazaar AL, Amrani Y, Hsu J, et al.: CD40-mediated signal transduction in human airway smooth muscle. J Immunol 1998, 161:3120–3127.

    PubMed  CAS  Google Scholar 

  34. Farmer P, Pugin J: Beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 2000, 279:L675–L682.

    PubMed  CAS  Google Scholar 

  35. Roth M, Johnson PR, Rudiger JJ, et al.: Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 2002, 360:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  36. Barnes PJ: Scientific rationale for inhaled combination therapy with long-acting beta2-agonists and corticosteroids. Eur Respir J 2002, 19:182–191.

    Article  PubMed  CAS  Google Scholar 

  37. Currie GP, Stenback S, Lipworth BJ: Effects of fluticasone vs. fluticasone/salmeterol on airway calibre and airway hyperresponsiveness in mild persistent asthma. Br J Clin Pharmacol 2003, 56:11–17.

    Article  PubMed  CAS  Google Scholar 

  38. Cho SH, Hartleroad JY, Oh CK: (S)-albuterol increases the production of histamine and IL-4 in mast cells. Int Arch Allergy Immunol 2001, 124:478–484.

    Article  PubMed  CAS  Google Scholar 

  39. Leff AR, Herrnreiter A, Naclerio RM, et al.: Effect of enantiomeric forms of albuterol on stimulated secretion of granular protein from human eosinophils. Pulm Pharmacol Ther 1997, 10:97–104.

    Article  PubMed  CAS  Google Scholar 

  40. Volcheck GW, Kelkar P, Bartemes KR, et al.: Effects of (R)- and (S)-isomers of beta-adrenergic agonists on eosinophil response to interleukin-5. Clin Exp Allergy 2005, 35:1341–1346.

    Article  PubMed  CAS  Google Scholar 

  41. Baramki D, Koester J, Anderson AJ, Borish L: Modulation of T-cell function by (R)- and (S)-isomers of albuterol: antiinflammatory influences of (R)-isomers are negated in the presence of the (S)-isomer. J Allergy Clin Immunol 2002, 109:449–454.

    Article  PubMed  CAS  Google Scholar 

  42. Milligan G, Bond RA: Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 1997, 18:468–474.

    PubMed  CAS  Google Scholar 

  43. Chidiac P, Hebert TE, Valiquette M, et al.: Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol 1994, 45:490–499.

    PubMed  CAS  Google Scholar 

  44. Elias JA, Wu Y, Zheng T, Panettieri R: Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am J Physiol 1997, 273:L648–L655.

    PubMed  CAS  Google Scholar 

  45. Saunders MA, Mitchell JA, Seldon PM, et al.: Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. Br J Pharmacol 1997, 120:545–546.

    Article  PubMed  CAS  Google Scholar 

  46. Panettieri RA Jr: Airway smooth muscle: immunomodulatory cells that modulate airway remodeling? Respir Physiol Neurobiol 2003, 137:277–293.

    Article  PubMed  CAS  Google Scholar 

  47. Endo T, Uchida Y, Nomura A, et al.: Activated eosinophils stimulate endothelin-1 release from airway epithelial cells by direct adherence via adhesion molecules. Pulm Pharmacol Ther 1997, 10:81–87.

    Article  PubMed  CAS  Google Scholar 

  48. Hallsworth MP, Soh CP, Twort CH, et al.: Cultured human airway smooth muscle cells stimulated by interleukin-1beta enhance eosinophil survival. Am J Respir Cell Mol Biol 1998, 19:910–919.

    PubMed  CAS  Google Scholar 

  49. Ameredes BT, Calhoun WJ: Modulation of GM-CSF release by enantiomers of beta agonists in human airway smooth muscle. J Allergy Clin Immunol 2005, 116:65–72.

    Article  PubMed  CAS  Google Scholar 

  50. Hallsworth MP, Twort CH, Lee TH, Hirst SJ: Beta(2)-adrenoceptor agonists inhibit release of eosinophil-activating cytokines from human airway smooth muscle cells. Br J Pharmacol 2001, 132:729–741.

    Article  PubMed  CAS  Google Scholar 

  51. Tomlinson PR, Wilson JW, Stewart AG: Salbutamol inhibits the proliferation of human airway smooth muscle cells grown in culture: relationship to elevated cAMP levels. Biochem Pharmacol 1995, 49:1809–1819.

    Article  PubMed  CAS  Google Scholar 

  52. Ibe BO, Abdallah MF, Raj JU: Mechanisms by which S-albuterol induces human bronchial smooth muscle cell proliferation. Int Arch Allergy Immunol 2008, 146:321–333.

    Article  PubMed  CAS  Google Scholar 

  53. Ferrada MA, Gordon EL, Jen KY, et al.: (R)-albuterol decreases immune responses: role of activated T cells. Respir Res 2008, 9:3.

    Article  PubMed  CAS  Google Scholar 

  54. Auais A, Wedde-Beer K, Piedimonte G: Anti-inflammatory effect of albuterol enantiomers during respiratory syncytial virus infection in rats. Pediatr Pulmonol 2005, 40:228–234.

    Article  PubMed  Google Scholar 

  55. Perrin-Fayolle M, Blum PS, Morley J, et al.: Differential responses of asthmatic airways to enantiomers of albuterol. Implications for clinical treatment of asthma. Clin Rev Allergy Immunol 1996, 14:139–147.

    Article  PubMed  CAS  Google Scholar 

  56. Cockcroft DW, Swystun VA: Effect of single doses of Ssalbutamol, R-salbutamol, racemic salbutamol, and placebo on the airway response to methacholine. Thorax 1997, 52:845–848.

    Article  PubMed  CAS  Google Scholar 

  57. Cockcroft DW, Davis BE, Swystun VA, Marciniuk DD: Tolerance to the bronchoprotective effect of beta2-agonists: comparison of the enantiomers of salbutamol with racemic salbutamol and placebo. J Allergy Clin Immunol 1999, 103:1049–1053.

    Article  PubMed  CAS  Google Scholar 

  58. Ramsay CM, Cowan J, Flannery E, et al.: Bronchoprotective and bronchodilator effects of single doses of (S)-salbutamol, (R)-salbutamol and racemic salbutamol in patients with bronchial asthma. Eur J Clin Pharmacol 1999, 55:353–359.

    Article  PubMed  CAS  Google Scholar 

  59. Sjosward KN, Hmani M, Davidsson A, et al.: Single-isomer R-salbutamol is not superior to racemate regarding protection for bronchial hyperresponsiveness. Respir Med 2004, 98:990–999.

    Article  PubMed  Google Scholar 

  60. Jacobson GA, Chong FV, Wood-Baker R: (R,S)-salbutamol plasma concentrations in severe asthma. J Clin Pharm Ther 2003, 28:235–238.

    Article  PubMed  CAS  Google Scholar 

  61. Nelson HS, Bensch G, Pleskow WW, et al.: Improved bronchodilation with levalbuterol compared with racemic albuterol in patients with asthma. J Allergy Clin Immunol 1998, 102:943–952.

    Article  PubMed  CAS  Google Scholar 

  62. Ahrens R, Weinberger M: Levalbuterol and racemic albuterol: are there therapeutic differences? J Allergy Clin Immunol 2001, 108:681–684.

    Article  PubMed  CAS  Google Scholar 

  63. Pleskow WW, Nelson HS, Schaefer K, et al.: Pairwise comparison of levalbuterol versus racemic albuterol in the treatment of moderate-to-severe asthma. Allergy Asthma Proc 2004, 25:429–436.

    PubMed  CAS  Google Scholar 

  64. Lotvall J, Palmqvist M, Arvidsson P, et al.: The therapeutic ratio of R-albuterol is comparable with that of RS-albuterol in asthmatic patients. J Allergy Clin Immunol 2001, 108:726–731.

    Article  PubMed  CAS  Google Scholar 

  65. Gawchik SM, Saccar CL, Noonan M, et al.: The safety and efficacy of nebulized levalbuterol compared with racemic albuterol and placebo in the treatment of asthma in pediatric patients. J Allergy Clin Immunol 1999, 103:615–621.

    Article  PubMed  CAS  Google Scholar 

  66. Milgrom H, Skoner DP, Bensch G, et al.: Low-dose levalbuterol in children with asthma: safety and efficacy in comparison with placebo and racemic albuterol. J Allergy Clin Immunol 2001, 108:938–945.

    Article  PubMed  CAS  Google Scholar 

  67. Carl JC, Myers TR, Kirchner HL, Kercsmar CM: Comparison of racemic albuterol and levalbuterol for treatment of acute asthma. J Pediatr 2003, 143:731–736.

    Article  PubMed  CAS  Google Scholar 

  68. Nowak R, Emerman C, Hanrahan JP, et al.: A comparison of levalbuterol with racemic albuterol in the treatment of acute severe asthma exacerbations in adults. Am J Emerg Med 2006, 24:259–267.

    Article  PubMed  Google Scholar 

  69. Hardasmalani MD, DeBari V, Bithoney WG, Gold N: Levalbuterol versus racemic albuterol in the treatment of acute exacerbation of asthma in children. Pediatr Emerg Care 2005, 21:415–419.

    Article  PubMed  Google Scholar 

  70. Ralston ME, Euwema MS, Knecht KR, et al.: Comparison of levalbuterol and racemic albuterol combined with ipratropium bromide in acute pediatric asthma: a randomized controlled trial. J Emerg Med 2005, 29:29–35.

    Article  PubMed  Google Scholar 

  71. Qureshi F, Zaritsky A, Welch C, et al.: Clinical efficacy of racemic albuterol versus levalbuterol for the treatment of acute pediatric asthma. Ann Emerg Med 2005, 46:29–36.

    Article  PubMed  Google Scholar 

  72. Quinn C: The cost effectiveness of levalbuterol versus racemic albuterol. Am J Manag Care 2004, 10:S153–S157.

    PubMed  Google Scholar 

  73. Pesola GR, Coelho Da’Costa V: Albuterol or levalbuterol for the treatment of asthma. Internet J Asthma Allergy Immunol 2004, 3. Available at http://www.ispub.com.

  74. Pikarsky RS, Acevedo RA: Clinical and economic impact resulting from a hospitalwide conversion from racemic albuterol to levalbuterol. Chest 2002, 122:146S.

    Article  Google Scholar 

  75. Pikarsky RS, Acevedo RA, Roman C, Farrell T: Comparison of rates of breakthrough treatments during a conversion from racemic albuterol to levalbuterol. Chest 2002, 122:125S.

    Google Scholar 

  76. Donohue JF, Hanania NA, Ciubotaru RL, et al.: Comparison of levalbuterol and racemic albuterol in hospitalized patients with acute asthma or COPD: a 2-week, multicenter, randomized, open-label study. Clin Ther 2008, 30:989–1002.

    Article  PubMed  CAS  Google Scholar 

  77. Berger WE, Ames DE, Harrison D: A patient satisfaction survey comparing levalbuterol with racemic albuterol in children. Allergy Asthma Proc 2004, 25:437–444.

    PubMed  CAS  Google Scholar 

  78. Masoli M, Fabian D, Holt S, Beasley R: The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004, 59:469–478.

    Article  PubMed  Google Scholar 

  79. Skrepnek GH, Skrepnek SV: Epidemiology, clinical and economic burden, and natural history of chronic obstructive pulmonary disease and asthma. Am J Manag Care 2004, 10:S129–S138.

    PubMed  Google Scholar 

  80. Cripps A, Riebe M, Schulze M, Woodhouse R: Pharmaceutical transition to non-CFC pressurized metered dose inhalers. Respir Med 2000, 94(Suppl B):S3–S9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Calhoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameredes, B.T., Calhoun, W.J. Levalbuterol versus albuterol. Curr Allergy Asthma Rep 9, 401–409 (2009). https://doi.org/10.1007/s11882-009-0058-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0058-6

Keywords

Navigation