Skip to main content

Advertisement

Log in

Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3 
Fig. 4

Similar content being viewed by others

References

  • Afghah Z, Chen X, Geiger JD (2020) Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 134:104670

    Article  CAS  PubMed  Google Scholar 

  • Annunziata I, Sano R, d’Azzo A (2018) Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis 9:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22:274–282

    Article  CAS  PubMed  Google Scholar 

  • Audano M, Schneider A, Mitro N (2018) Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 147:291–309

    Article  CAS  PubMed  Google Scholar 

  • Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, Lipinski MM, Feldman RA (2015) Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 24:5775–5788

    Article  CAS  PubMed  Google Scholar 

  • Bae D, Moore KA, Mella JM, Hayashi SY, Hollien J (2019) Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol 218:1118–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Abeta in preclinical models of HIV infection. J Neurosci : the official journal of the Society for Neuroscience 34:11485–11503

    Article  CAS  Google Scholar 

  • Baixauli F, Acin-Perez R, Villarroya-Beltri C, Mazzeo C, Nunez-Andrade N, Gabande-Rodriguez E, Ledesma MD, Blazquez A, Martin MA, Falcon-Perez JM, Redondo JM, Enriquez JA, Mittelbrunn M (2015) Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metab 22:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj L, Lotfi P, Pal R, Ronza AD, Sharma J, Sardiello M (2019) Lysosome biogenesis in health and disease. J Neurochem 148:573–589

    Article  CAS  PubMed  Google Scholar 

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696

    Article  CAS  PubMed  Google Scholar 

  • Baltazar GC, Guha S, Lu W, Lim J, Boesze-Battaglia K, Laties AM, Tyagi P, Kompella UB, Mitchell CH (2012) Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One 7:e49635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi X, Haque TS, Zhou J, Skillman AG, Lin B, Lee CE, Kuntz ID, Ellman JA, Lynch G (2000) Novel cathepsin D inhibitors block the formation of hyperphosphorylated tau fragments in hippocampus. J Neurochem 74:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Bonam SR, Wang F, Muller S (2019) Lysosomes as a therapeutic target. Nat Rev Drug Discov 18:923–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, Dehay B (2016) Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy 12:472–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boz Z, Hu M, Yu Y, Huang XF (2020) N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep 10:19185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793:605–614

    Article  CAS  PubMed  Google Scholar 

  • Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301:215–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler D, Bahr BA (2006) Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxid Redox Signal 8:185–196

    Article  CAS  PubMed  Google Scholar 

  • Cabukusta B, Neefjes J (2018) Mechanisms of lysosomal positioning and movement. Traffic 19:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Paskevich PA, Kominami E, Nixon RA (1991) Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci U S A 88:10998–11002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, Lippa C, Nixon RA (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, Jin X, Liu J, Mo S, Zhang T, Cheng F, Zhou Y, Zhang H, Tang K, Ma J, Liu Y, Huang B (2018) Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun 9:873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen PM, Gombart ZJ, Chen JW (2011) Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration. Cell Biosci 1:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ghribi O, Geiger JD (2008) Rabbits fed cholesterol-enriched diets exhibit pathological features of inclusion body myositis. Am J Physiol Regul Integr Comp Physiol 294:R829-835

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chino H, Mizushima N (2020) ER-Phagy: Quality Control and Turnover of Endoplasmic Reticulum. Trends Cell Biol 30:384–398

    Article  CAS  PubMed  Google Scholar 

  • Christensen KA, Myers JT, Swanson JA (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115:599–607

    Article  CAS  PubMed  Google Scholar 

  • Colacurcio DJ, Nixon RA (2016) Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 32:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramb G (1986) Selective lysosomal uptake and accumulation of the beta-adrenergic antagonist propranolol in cultured and isolated cell systems. Biochem Pharmacol 35:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci : the official journal of the Society for Neuroscience 14:2260–2271

    Article  CAS  Google Scholar 

  • Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta G, Miller NM, Afghah Z, Geiger JD, Chen X (2019) HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 13:329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauer P, Gupta VK, McGinn O, Nomura A, Sharma NS, Arora N, Giri B, Dudeja V, Saluja AK, Banerjee S (2017) Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 7:1564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson SM, Vander Heiden MG (2017) Critical Functions of the Lysosome in Cancer Biology. Annu Rev Pharmacol Toxicol 57:481–507

    Article  CAS  PubMed  Google Scholar 

  • Davies JP, Ioannou YA (2000) Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem 275:24367–24374

    Article  CAS  PubMed  Google Scholar 

  • de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849

    Article  PubMed  CAS  Google Scholar 

  • del Toro D, Alberch J, Lazaro-Dieguez F, Martin-Ibanez R, Xifro X, Egea G, Canals JM (2009) Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 20:1478–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Belanger N, Grondin M, Nguyen AP, Michel J, Germain M (2016) Loss of Mitochondrial Function Impairs Lysosomes. J Biol Chem 291:10263–10276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deus CM, Yambire KF, Oliveira PJ, Raimundo N (2020) Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol Med 26:71–88

    Article  CAS  PubMed  Google Scholar 

  • Doherty J, Baehrecke EH (2018) Life, death and autophagy. Nat Cell Biol 20:1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Liu Y, Zhang L, Huang S, Ding HF, Dong Z (2015) mTOR contributes to ER stress and associated apoptosis in renal tubular cells. Am J Physiol Renal Physiol 308:F267-274

    Article  CAS  PubMed  Google Scholar 

  • El-Hage N, Rodriguez M, Dever SM, Masvekar RR, Gewirtz DA, Shacka JJ (2015) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse. J Virol 89:1024–1035

    Article  PubMed  CAS  Google Scholar 

  • Elfrink HL, Zwart R, Baas F, Scheper W (2013) Inhibition of endoplasmic reticulum associated degradation reduces endoplasmic reticulum stress and alters lysosomal morphology and distribution. Mol Cells 35:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo T, Yamano K, Kawano S (2011) Structural insight into the mitochondrial protein import system. Biochim Biophys Acta 1808:955–970

    Article  CAS  PubMed  Google Scholar 

  • Erie C, Sacino M, Houle L, Lu ML, Wei J (2015) Altered lysosomal positioning affects lysosomal functions in a cellular model of Huntington’s disease. Eur J Neurosci 42:1941–1951

    Article  PubMed  PubMed Central  Google Scholar 

  • Fais S et al (2016) Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 10:3886–3899

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Yang J (2016) Lysosomal Calcium in Neurodegeneration Messenger (Los Angel) 5:56–66

    Google Scholar 

  • Fernández B, Fdez E, Gómez-Suaga P, Gil F, Molina-Villalba I, Ferrer I, Patel S, Churchill GC, Hilfiker S (2016) Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. In: Autophagy, pp 1487–1506

  • Festa L, Roth LM, B KJ, Geiger JD, Jordan-Sciutto KL, Grinspan JB, (2019) Protease Inhibitors. Implications for Lysosomal Stress. J Neuroimmune Pharmacol, Saquinavir and Darunavir, Inhibit Oligodendrocyte Maturation

    Google Scholar 

  • Folts CJ, Scott-Hewitt N, Proschel C, Mayer-Proschel M, Noble M (2016) Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity. PLoS Biol 14:e1002583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fossale E, Wolf P, Espinola JA, Lubicz-Nawrocka T, Teed AM, Gao H, Rigamonti D, Cattaneo E, MacDonald ME, Cotman SL (2004) Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci 5:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedland N, Liou HL, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A 100:2512–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N (2006) Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther 14:831–839

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi-Hirose I, Aki T, Unuma K, Funakoshi T, Noritake K, Uemura K (2013) Distinct effects of methamphetamine on autophagy-lysosome and ubiquitin-proteasome systems in HL-1 cultured mouse atrial cardiomyocytes. Toxicology 312:74–82

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschling DE, Nystrom T (2017) The Upsides and Downsides of Organelle Interconnectivity. Cell 169:24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112:E3699-3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra F, Girolimetti G, Beli R, Mitruccio M, Pacelli C, Ferretta A, Gasparre G, Cocco T, Bucci C (2019) Synergistic effect of mitochondrial and lysosomal dysfunction in Parkinson's Disease. Cells 8

  • Guix FX (2020) The interplay between aging-associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. J Neurosci Res 98:262–283

    Article  CAS  PubMed  Google Scholar 

  • Halcrow P, Khan N, Datta G, Ohm JE, Chen X, Geiger JD (2019) Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep 2

  • Hamaguchi R, Haginaka J, Tanimoto T, Kuroda Y (2014) Maintenance of luminal pH and protease activity in lysosomes/late endosomes by vacuolar ATPase in chlorpromazine-treated RAW264 cells accumulating phospholipids. Cell Biol Toxicol 30:67–77

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000a) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000b) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  • He B, Shi Y, Liang Y, Yang A, Fan Z, Yuan L, Zou X, Chang X, Zhang H, Wang X, Dai W, Wang Y, Zhang Q (2018) Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat Commun 9:2393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    Article  CAS  PubMed  Google Scholar 

  • Heuser J (1989) Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol 108:855–864

    Article  CAS  PubMed  Google Scholar 

  • Hill S, Sataranatarajan K, Van Remmen H (2018) Role of Signaling Molecules in Mitochondrial Stress Response. Front Genet 9:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann AC, Minakaki G, Menges S, Salvi R, Savitskiy S, Kazman A, Vicente Miranda H, Mielenz D, Klucken J, Winkler J, Xiang W (2019) Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose. Sci Rep 9:544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoglinger D, Haberkant P, Aguilera-Romero A, Riezman H, Porter FD, Platt FM, Galione A, Schultz C (2015) Intracellular sphingosine releases calcium from lysosomes. Elife 4

  • Holopainen JM, Saarikoski J, Kinnunen PK, Jarvela I (2001) Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur J Biochem 268:5851–5856

    Article  CAS  PubMed  Google Scholar 

  • Holtzman E (1989) Lysosomes. Plenum Press, New York

    Book  Google Scholar 

  • Hsu CL, Lee EX, Gordon KL, Paz EA, Shen WC, Ohnishi K, Meisenhelder J, Hunter T, La Spada AR (2018) MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun 9:942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang ML, Chiang S, Kalinowski DS, Bae DH, Sahni S, Richardson DR (2019) The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxid Med Cell Longev 2019:6392763

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui L, Chen X, Geiger JD (2012a) Endolysosome involvement in LDL cholesterol-induced Alzheimer’s disease-like pathology in primary cultured neurons. Life Sci 91:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui L, Chen X, Haughey NJ, Geiger JD (2012b) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X (2015) Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium 58:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui L, Ye Y, Soliman ML, Lakpa KL, Miller NM, Afghah Z, Geiger JD, Chen X (2019) Antiretroviral drugs promote amyloidogenesis by de-acidifying endolysosomes. J Neuroimmune Pharmacol

  • Humeau J, Leduc M, Cerrato G, Loos F, Kepp O, Kroemer G (2020) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) in autophagy. Cell Death Dis 11:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JJ, Lee SJ, Kim TY, Cho JH, Koh JY (2008) Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci: The Official Journal of the Society for Neuroscience 28:3114–3122

  • Jang JW, Song Y, Kim KM, Kim JS, Choi EK, Kim J, Seo H (2016) Hepatocellular carcinoma-targeted drug discovery through image-based phenotypic screening in co-cultures of HCC cells with hepatocytes. BMC Cancer 16:810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, Phinney B, Johansen T, Deretic V (2018) Galectins Control mTOR in Response to Endomembrane Damage. Mol Cell 70(120–135):e128

    Google Scholar 

  • Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164:975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DE, Ostrowski P, Jaumouille V, Grinstein S (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212:677–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanekiyo T, Bu G (2014) The low-density lipoprotein receptor-related protein 1 and amyloid-beta clearance in Alzheimer’s disease. Front Aging Neurosci 6:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang Y, Li Y, Zhang T, Chi Y, Liu M (2019) Effects of transcription factor EB on oxidative stress and apoptosis induced by high glucose in podocytes. Int J Mol Med 44:447–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Chen X, Geiger JD (2020a) Role of divalent cations in HIV-1 replication and pathogenicity. Viruses 12

  • Khan N, Datta G, Geiger JD, Chen X (2018) Apolipoprotein E isoform dependently affects Tat-mediated HIV-1 LTR transactivation. J Neuroinflammation 15:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan N, Haughey NJ, Nath A, Geiger JD (2019) Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer’s disease. Brain Res 1722:146389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Lakpa KL, Halcrow PW, Afghah Z, Miller NM, Geiger JD, Chen X (2019) BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep 9:12285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X (2020) Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 34:4147–4162

    Article  CAS  PubMed  Google Scholar 

  • Kim A, Cunningham KW (2015) A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 26:4631–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinghorn KJ, Gronke S, Castillo-Quan JI, Woodling NS, Li L, Sirka E, Gegg M, Mills K, Hardy J, Bjedov I, Partridge L (2016) A drosophila model of neuronopathic gaucher disease demonstrates lysosomal-autophagic defects and altered mTOR signalling and is functionally rescued by rapamycin. J Neurosci: The Official Journal of the Society for Neuroscience 36:11654–11670

  • Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CW, Quinn J, Muallem S (2011) TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 50:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G, Brecht L, Veenendaal T, Polajnar M, Bluemke A, Ehrmann M, Klumperman J, Jaattela M, Behrends C, Meyer H (2019) The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 20:e48014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno K, Normington K, Sambrook J, Gething MJ, Mori K (1993) The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 13:877–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, Saftig P, Uchiyama Y (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167:1713–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525

    Article  CAS  PubMed  Google Scholar 

  • Kozako T, Soeda S, Yoshimitsu M, Arima N, Kuroki A, Hirata S, Tanaka H, Imakyure O, Tone N, Honda S, Soeda S (2016) Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio 6:442–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijpers M, Azarnia Tehran D, Haucke V, Soykan T (2020) The axonal endo-lysosomal and autophagic systems. J Neurochem

  • Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43:1686–1697

    Article  CAS  PubMed  Google Scholar 

  • La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA (2020) MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 8:609683

    Article  PubMed  Google Scholar 

  • Lakpa KL, Halcrow PW, Chen X, Geiger JD (2020) Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. Adv Exp Med Biol 1131:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CA, Blackstone C (2020) ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158544

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie PP, Mohan P, Coffey EE, Kompella U, Mitchell CH, Lloyd-Evans E, Nixon RA (2015) Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Rep 12:1430–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci: The Official Journal of the Society for Neuroscience 31:7817–7830

  • Lener T et al (2015) Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 4:30087

    Article  PubMed  CAS  Google Scholar 

  • Li F, Lang F, Zhang H, Xu L, Wang Y, Hao E (2016) Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice. Oxid Med Cell Longev 2016:5380319

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Sun S, Tan L, Wang Y, Wang L, Zhang Z, Zhang L (2019) Polystyrene Nanoparticles Reduced ROS and Inhibited Ferroptosis by Triggering Lysosome Stress and TFEB Nucleus Translocation in a Size-Dependent Manner. Nano Lett 19:7781–7792

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2016) Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 18:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA, Corn JE (2020) A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell 180(1160–1177):e1120

    Google Scholar 

  • Liang Q, Ouyang X, Schneider L, Zhang J (2011) Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons. Mol Neurodegener 6:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, Liang X, Bi X (2007) Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. Am J Pathol 171:962–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie PPY, Nixon RA (2019) Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis 122:94–105

    Article  CAS  PubMed  Google Scholar 

  • Liesse M, Lhoest G, Trouet A, Tulkens P (1976) Uptake and intracellular localization of morphine in lysosomes and cell sap of cultured fibroblasts. Arch Int Physiol Biochim 84:638–639

    CAS  PubMed  Google Scholar 

  • Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK (2015) LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS One 10:e0128903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J, Shi SS, Zhang JQ, Zhang YJ, Zhang L, Liu Y, Jin PP, Wei PF, Shi RH, Zhou W, Wen LP (2016) Giant Cellular Vacuoles Induced by Rare Earth Oxide Nanoparticles are Abnormally Enlarged Endo/Lysosomes and Promote mTOR-Dependent TFEB Nucleus Translocation. Small 12:5759–5768

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sung T, Lin N, Abraham RT, Jessen BA (2017) Lysosomal adaptation: How cells respond to lysosomotropic compounds. PLoS One 12:e0173771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM (2014) The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol 6:a016840

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv H, Shang P (2018) The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 10:899–916

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre AC, Cutler DJ (1988) The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos 9:513–526

    Article  CAS  PubMed  Google Scholar 

  • Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B (2018) Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  CAS  PubMed  Google Scholar 

  • Manshian BB, Pokhrel S, Madler L, Soenen SJ (2018) The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J Nanobiotechnology 16:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques ARA, Saftig P (2019) Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 132

  • Martina JA, Puertollano R (2018) Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J Biol Chem 293:12525–12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina JA, Diab HI, Brady OA, Puertollano R (2016) TFEB and TFE3 are novel components of the integrated stress response. EMBO J 35:479–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini-Stoica H, Xu Y, Ballabio A, Zheng H (2016) The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci 39:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB, Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240:98–103

    Article  CAS  PubMed  Google Scholar 

  • Matteoni R, Kreis TE (1987) Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol 105:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14:1435–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  CAS  PubMed  Google Scholar 

  • Miranda AM, Lasiecka ZM, Xu Y, Neufeld J, Shahriar S, Simoes S, Chan RB, Oliveira TG, Small SA, Di Paolo G (2018) Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat Commun 9:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mori K (2015) The unfolded protein response: the dawn of a new field. Proc Jpn Acad Ser B Phys Biol Sci 91:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers BM, Prendergast FG, Holman R, Kuntz SM, LaRusso NF (1991) Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. J Clin Invest 88:1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T, Yoshino O, Sago H, Matsumoto K, Sharma S, Saito S (2019) Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep 9:11466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129:2475–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nara A, Aki T, Funakoshi T, Unuma K, Uemura K (2012) Hyperstimulation of macropinocytosis leads to lysosomal dysfunction during exposure to methamphetamine in SH-SY5Y cells. Brain Res 1466:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O (2019) Morphine-induced modulation of endolysosomal iron mediates upregulation of ferritin heavy chain in cortical neurons. eNeuro 6

  • Nath A, Padua RA, Geiger JD (1995) HIV-1 coat protein gp120-induced increases in levels of intrasynaptosomal calcium. Brain Res 678:200–206

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47:186–194

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D (2019) Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson’s Disease. Trends Neurosci 42:140–149

    Article  CAS  PubMed  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article  CAS  PubMed  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(Suppl 1):51–63

    PubMed  PubMed Central  Google Scholar 

  • Ohkuma S, Poole B (1981) Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 90:656–664

    Article  CAS  PubMed  Google Scholar 

  • Oikawa N, Walter J (2019) Presenilins and gamma-secretase in membrane proteostasis. Cells 8

  • Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17:1374–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L, Saleem U, Tse DY, Sanagasetti D, Wu SM, Neilson JR, Pereira FA, Pautler RG, Rodney GG, Cooper JD, Sardiello M (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan HY, Alamri AH, Valapala M (2019) Nutrient deprivation and lysosomal stress induce activation of TFEB in retinal pigment epithelial cells. Cell Mol Biol Lett 24:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papadopoulos C, Meyer H (2017) Detection and Clearance of Damaged Lysosomes by the Endo-Lysosomal Damage Response and Lysophagy. Curr Biol 27:R1330–R1341

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H (2017) VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36:135–150

    Article  CAS  PubMed  Google Scholar 

  • Partaledis JA, Berlin V (1993) The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A 90:5450–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG, Dotti CG, Bacallao R, Kurtz I, Simons K, Prydz K (1991) pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells. J Cell Biol 113:261–274

    Article  CAS  PubMed  Google Scholar 

  • Patierno S, Anselmi L, Jaramillo I, Scott D, Garcia R, Sternini C (2011) Morphine induces mu opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 140:618–626

    Article  CAS  PubMed  Google Scholar 

  • Pau AK, George JM (2014) Antiretroviral therapy: current drugs. Infect Dis Clin North Am 28:371–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Perera RM, Zoncu R (2016) The Lysosome as a Regulatory Hub. Annu Rev Cell Dev Biol 32:223–253

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persellin RH (1969) Lysosome stabilization by leukocyte granule membrane antiserum. J Immunol 103:29–44

    Article  CAS  PubMed  Google Scholar 

  • Pietrella D, Monari C, Retini C, Palazzetti B, Bistoni F, Vecchiarelli A (1998) Human immunodeficiency virus type 1 envelope protein gp120 impairs intracellular antifungal mechanisms in human monocytes. J Infect Dis 177:347–354

    Article  CAS  PubMed  Google Scholar 

  • Platt FM (2018) Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 17:133–150

    Article  CAS  PubMed  Google Scholar 

  • Plotegher N, Duchen MR (2017) Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders. Trends Mol Med 23:116–134

    Article  CAS  PubMed  Google Scholar 

  • Pourahmad J, Eskandari MR, Kaghazi A, Shaki F, Shahraki J, Fard JK (2012) A new approach on valproic acid induced hepatotoxicity: involvement of lysosomal membrane leakiness and cellular proteolysis. Toxicol In Vitro 26:545–551

    Article  CAS  PubMed  Google Scholar 

  • Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS (2016) Mechanisms and functions of lysosome positioning. J Cell Sci 129:4329–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabanal-Ruiz Y, Korolchuk VI (2018) mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci 19

  • Raben N, Roberts A, Plotz PH (2007) Role of autophagy in the pathogenesis of Pompe disease. Acta Myol 26:45–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratovitski T, Chighladze E, Waldron E, Hirschhorn RR, Ross CA (2011) Cysteine proteases bleomycin hydrolase and cathepsin Z mediate N-terminal proteolysis and toxicity of mutant huntingtin. J Biol Chem 286:12578–12589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's Disease. Cells 8

  • Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, Ravi S, Barnes S, Darley-Usmar VM, Zhang J (2017) Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 11:73–81

    Article  CAS  PubMed  Google Scholar 

  • Rehli M, Den Elzen N, Cassady AI, Ostrowski MC, Hume DA (1999) Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 56:111–120

    Article  CAS  PubMed  Google Scholar 

  • Reuser AJ, Drost MR (2006) Lysosomal dysfunction, cellular pathology and clinical symptoms: basic principles. Acta Paediatr Suppl 95:77–82

    Article  PubMed  Google Scholar 

  • Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5:ra42.

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  CAS  PubMed  Google Scholar 

  • Ruggiano A, Foresti O, Carvalho P (2014) Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    Article  CAS  PubMed  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  CAS  PubMed  Google Scholar 

  • Sardar Sinha M, Ansell-Schultz A, Civitelli L, Hildesjo C, Larsson M, Lannfelt L, Ingelsson M, Hallbeck M (2018) Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 136:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Yoshida H (2015) Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 157:185–195

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453-462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Ballabio A (2014) Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harb Perspect Biol 6

  • Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  CAS  PubMed  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT (2017) STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J 36:2544–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  CAS  PubMed  Google Scholar 

  • Siman R, Mistretta S, Durkin JT, Savage MJ, Loh T, Trusko S, Scott RW (1993) Processing of the beta-amyloid precursor. Multiple proteases generate and degrade potentially amyloidogenic fragments. J Biol Chem 268:16602–16609

    Article  CAS  PubMed  Google Scholar 

  • Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L (2013) TFEB regulates lysosomal proteostasis. Hum Mol Genet 22:1994–2009

    Article  CAS  PubMed  Google Scholar 

  • Soto-Heredero G, Baixauli F, Mittelbrunn M (2017) Interorganelle Communication between Mitochondria and the Endolysosomal System. Front Cell Dev Biol 5:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staneva-Stoicheva D, Krustev L, Kitova E (1977) Morphological changes in the liver of rats treated with phenobarbital, methylphenobarbital and their N-substituted morpholinoethyl derivatives. Eksp Med Morfol 16:90–96

    CAS  PubMed  Google Scholar 

  • Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ, Grinstein S (2010) A cation counterflux supports lysosomal acidification. J Cell Biol 189:1171–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Zheng B, Wang CY, Yang YZ, Luo WW, Ma SM, Zhang XH, Ma D, Sun Y, Yang Z, Wen JK, Liu ZX (2018) Oxidative Stress Induces Neuronal Apoptosis Through Suppressing Transcription Factor EB Phosphorylation at Ser467. Cell Physiol Biochem 46:1536–1554

    Article  CAS  PubMed  Google Scholar 

  • Sun A (2018) Lysosomal storage disease overview. Ann Transl Med 6:476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talloczy Z, Martinez J, Joset D, Ray Y, Gacser A, Toussi S, Mizushima N, Nosanchuk JD, Goldstein H, Loike J, Sulzer D, Santambrogio L (2008) Methamphetamine inhibits antigen processing, presentation, and phagocytosis. PLoS Pathog 4:e28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906

    Article  CAS  PubMed  Google Scholar 

  • Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C (2019) Insight into the role of extracellular vesicles in lysosomal storage disorders. Genes (Basel) 10

  • Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, Falcon-Perez JM, Carracedo A (2016) Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol 29:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C, Fernandez-Checa JC (2017) Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Front Physiol 8:982

    Article  PubMed  PubMed Central  Google Scholar 

  • Trajkovic K, Jeong H, Krainc D (2017) Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway. J Neurosci J Soc for Neurosci 37:9000–9012

    Article  CAS  Google Scholar 

  • Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ (2008) Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48:1644–1654

    Article  CAS  PubMed  Google Scholar 

  • Valera-Alberni M, Canto C (2018) Mitochondrial stress management: a dynamic journey. Cell Stress 2:253–274

    Article  PubMed  PubMed Central  Google Scholar 

  • van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  PubMed  CAS  Google Scholar 

  • Vega-Rubin-de-Celis S, Pena-Llopis S, Konda M, Brugarolas J (2017) Multistep regulation of TFEB by MTORC1. Autophagy 13:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallings RL, Humble SW, Ward ME, Wade-Martins R (2019) Lysosomal Dysfunction at the Centre of Parkinson’s Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends Neurosci 42:899–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Gomez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19:918–931

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gao Q, Yang M, Zhang X, Yu L, Lawas M, Li X, Bryant-Genevier M, Southall NT, Marugan J, Ferrer M, Xu H (2015) Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci U S A 112:E1373-1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wartosch L, Bright NA, Luzio JP (2015) Lysosomes. Curr Biol 25:R315-316

    Article  CAS  PubMed  Google Scholar 

  • Wibo M, Poole B (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol 63:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC (2010) alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci 37:1949–1961

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu E, Liu J, Liu H, Wang X, Xiong H (2018) Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1beta Production in Microglia. J Neuroimmune Pharmacol 13:237–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, Senderovich O, Meyron-Holtz EG, Milosevic I, Frahm J, West AP, Raimundo N (2019) Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 8

  • Yanagawa M, Tsukuba T, Nishioku T, Okamoto Y, Okamoto K, Takii R, Terada Y, Nakayama KI, Kadowaki T, Yamamoto K (2007) Cathepsin E deficiency induces a novel form of lysosomal storage disorder showing the accumulation of lysosomal membrane sialoglycoproteins and the elevation of lysosomal pH in macrophages. J Biol Chem 282:1851–1862

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Hui L, Lakpa KL, Xing Y, Wollenzien H, Chen X, Zhao JX, Geiger JD (2019) Effects of silica nanoparticles on endolysosome function in primary cultured neurons (1). Can J Physiol Pharmacol 97:297–305

    Article  CAS  PubMed  Google Scholar 

  • Yim WW, Mizushima N (2020) Lysosome biology in autophagy Cell Discov 6:6

    Article  CAS  PubMed  Google Scholar 

  • Yogalingam G, Lee AR, Mackenzie DS, Maures TJ, Rafalko A, Prill H, Berguig GY, Hague C, Christianson T, Bell SM, LeBowitz JH (2017) Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells. J Biol Chem 292:4255–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14:207–215

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, Hu X, Gao Q, Yang M, Lawas M, Delling M, Marugan J, Ferrer M, Xu H (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7:12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhitomirsky B, Assaraf YG (2015) Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 6:1143–1156

    Article  PubMed  Google Scholar 

  • Zhitomirsky B, Yunaev A, Kreiserman R, Kaplan A, Stark M, Assaraf YG (2018) Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis 9:1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigdon H, Meshcheriakova A, Farfel-Becker T, Volpert G, Sabanay H, Futerman AH (2017) Altered lysosome distribution is an early neuropathological event in neurological forms of Gaucher disease. FEBS Lett 591:774–783

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We gratefully acknowledge research support from the National Institute of General Medical Sciences under award numbers P30GM100329 and U54GM115458, the National Institute of Mental Health under award numbers R01MH100972 and R01MH105329, the National Institute of Neurological Diseases and Stroke (NINDS) under award number R01NS065957, and the National Institute of Drug Abuse under award number R01DA032444. The authors would like to thank Parinaz Ghanbari for designing illustrations contained in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors played a major role in conceptualizing, writing and editing this manuscript.

Corresponding author

Correspondence to Jonathan D. Geiger.

Ethics declarations

Conflict of Interest

The authors declare that this manuscript was written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakpa, K.L., Khan, N., Afghah, Z. et al. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 16, 219–237 (2021). https://doi.org/10.1007/s11481-021-09990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-021-09990-7

Keywords

Navigation