Skip to main content
Log in

Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Reproducible quantification of metabolites in tissue samples is of high importance for characterization of animal models and identification of metabolic changes that occur in different tissue types in specific diseases. However, the extraction of metabolites from tissue is often the most labor-intensive and error-prone step in metabolomics studies. Here, we report the development of a standardized high-throughput method for rapid and reproducible extraction of metabolites from multiple tissue samples from different organs of several species. The method involves a bead-based homogenizer in combination with a simple extraction protocol and is compatible with state-of-the-art metabolomics kit technology for quantitative and targeted flow injection tandem mass spectrometry. We analyzed different extraction solvents for both reproducibility as well as suppression effects for a range of different animal tissue types including liver, kidney, muscle, brain, and fat tissue from mouse and bovine. In this study, we show that for most metabolites a simple methanolic extraction is best suited for reliable results. An additional extraction step with phosphate buffer can be used to improve the extraction yields for a few more polar metabolites. We provide a verified tissue extraction setup to be used with different indications. Our results demonstrate that this high-throughput procedure provides a basis for metabolomic assays with a wide spectrum of metabolites. The developed method can be used for tissue extraction setup for different indications like studies of metabolic syndrome, obesity, diabetes or cardiovascular disorders and nutrient transformation in livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altmaier, E., Kastenmüller, G., Römisch-Margl, W., Thorand, B., Weinberger, K. M., Adamski, J., et al. (2009). Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Molecular Nutrition & Food Research, 53, 1357–1365.

    Article  CAS  Google Scholar 

  • Altmaier, E., Ramsay, S. L., Graber, A., Mewes, H. W., Weinberger, K. M., & Suhre, K. (2008). Bioinformatics analysis of targeted metabolomics—Uncovering old and new tales of diabetic mice under medication. Endocrinology, 149, 3478–3489.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Bogumil, R., Koal, T., Weinberger, K. M., & Dammeier, S. (2008). Massenspektrometrische Analyse von Blutplasma im Kitformat. Laborwelt, 2, 17–23.

    Google Scholar 

  • Denkert, C., Budczies, J., Weichert, W., Wohlgemuth, G., Scholz, M., Kind, T., et al. (2008). Metabolite profiling of human colon carcinoma—Deregulation of TCA cycle and amino acid turnover. Molecular Cancer, 7, 72.

    Article  PubMed  Google Scholar 

  • Deprez, S., Sweatman, B. C., Connor, S. C., Haselden, J. N., & Waterfield, C. J. (2002). Optimisation of collection, storage and preparation of rat plasma for 1H NMR spectroscopic analysis in toxicology studies to determine inherent variation in biochemical profiles. Journal of Pharmaceutical and Biomedical Analysis, 30, 1297–1310.

    Article  PubMed  CAS  Google Scholar 

  • Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35, W606–W612.

    Article  PubMed  Google Scholar 

  • Fiedler, G. M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., et al. (2007). Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry, 53, 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  • Freedman, D. M., Chang, S. C., Falk, R. T., Purdue, M. P., Huang, W. Y., McCarty, C. A., et al. (2008). Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers and Prevention, 17, 889–894.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, H., Gailus-Durner, V., Adler, T., Pimentel, J. A., Becker, L., Bolle, I., et al. (2009). The German mouse clinic: A platform for systemic phenotype analysis of mouse models. Current Pharmaceutical Biotechnology, 10, 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Gailus-Durner, V., Fuchs, H., Adler, T., Aguilar Pimentel, A., Becker, L., Bolle, I., et al. (2009). Systemic first-line phenotyping. Methods in Molecular Biology, 530, 463–509.

    Article  PubMed  CAS  Google Scholar 

  • Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., et al. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.

    Article  PubMed  Google Scholar 

  • Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. FEBS Journal, 274, 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. L., & Nicholls, A. W. (2006). Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics, 7, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Hettick, J. M., Green, B. J., Buskirk, A. D., Kashon, M. L., Slaven, J. E., Janotka, E., et al. (2008). Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Analytical Biochemistry, 380, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Koal, T., & Deigner, H. P. (2010). Challenges in mass spectrometry based targeted metabolomics. Current Molecular Medicine, 10, 216–226.

    Article  PubMed  CAS  Google Scholar 

  • Kratzsch, J. & Ceglarek, U. (2010). Preclinical challenges in steroid analysis of human samples. Journal of Steroid Biochemistry and Molecular Biology, in press.

  • Kühn, C., Bellmann, O., Voigt, J., Wegner, J., Guiard, V., & Ender, K. (2002). An experimental approach for studying the genetic and physiological background of nutrient transformation in cattle with respect to nutrient secretion and accretion type. Archives Animal Breeding, 45, 317–330.

    Google Scholar 

  • Saloniemi, T., Welsh, M., Lamminen, T., Saunders, P., Makela, S., Streng, T., et al. (2009). Human HSD17B1 expression masculinizes transgenic female mice. Molecular and Cellular Endocrinology, 301, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, F. B., Constantin-Teodosiu, D., & Greenhaff, P. L. (2007). New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. Journal of Physiology, 581, 431–444.

    Article  PubMed  Google Scholar 

  • Urban, M., Enot, D. P., Dallmann, G., Korner, L., Forcher, V., Enoh, P., et al. (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Analytical Biochemistry, 406, 124–131.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of Health and Human Services, F. a. D. A., Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2001). Guidance for Industry. Bioanalytical Method Validation.

  • Verollet, R. (2008). A major step towards efficient sample preparation with bead-beating. Biotechniques, 44, 832–833.

    Article  PubMed  CAS  Google Scholar 

  • Wang-Sattler, R., Yu, Y., Mittelstrass, K., Lattka, E., Altmaier, E., Gieger, C., et al. (2008). Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—First results from the KORA study. PLoS ONE, 3, e3863.

    Article  PubMed  Google Scholar 

  • Weikard, R., Altmaier, E., Suhre, K., Weinberger, K. M., Hammon, H. M., Albrecht, E., et al. (2010). Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition. Physiological Genomics, 42A, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, G., Wang-Sattler, R., Hart, D. J., Arden, N. K., Hakim, A. J., Illig, T., et al. (2009). Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Annals of the Rheumatic Diseases, 69, 1227–1231.

    Article  Google Scholar 

  • Zivkovic, A. M., Wiest, M. M., Nguyen, U. T., Davis, R., Watkins, S. M., & German, J. B. (2009). Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 5, 507–516.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Christa Kühn from the Leibniz Institute for Farm Animal Biology (Dummerstorf, Germany) for bovine tissue samples. We thank Gabriele Zieglmeier for mouse tissue preparations, and Tamara Halex and Arsin Sabunchi for the excellent assistance in metabolomic assays. We are thankful to Dr. Gabriele Möller and Dr. Michael Urban for their advice in experimental design and tissue homogenization procedures. This study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center Diabetes Research (DZD e.V.) and to the research project Greifswald Approach to Individualized Medicine (GANI_MED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Adamski.

Additional information

Werner Römisch-Margl and Cornelia Prehn contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Supplementary material 2 (DOC 362 kb)

Supplementary material 3 (DOC 62 kb)

Supplementary material 4 (DOC 283 kb)

11306_2011_293_MOESM5_ESM.eps

Supplementary Fig. 1. Histograms of metabolite CVs. Data are depicting the distribution of metabolite CVs for repeated homogenization (= CV over three average concentrations from each homogenization) and repeated measurement (= average over the CVs from three measured wells belonging to one homogenization) in the three tissue types as indicated. (EPS 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römisch-Margl, W., Prehn, C., Bogumil, R. et al. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 8, 133–142 (2012). https://doi.org/10.1007/s11306-011-0293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0293-4

Keywords

Navigation