Skip to main content
Log in

Renal phenotype in heterozygous Lmx1b knockout mice (Lmx1b +/−) after unilateral nephrectomy

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The nail-patella syndrome (NPS) is a rare autosomal-dominant disorder which is caused by loss-of-function mutations in the transcription factor LMX1B. NPS is characterized by dysplastic nails, absent or hypoplastic patellae, minor skeletal abnormalities and nephropathy (in 20–40% of the cases), which is the most severe aspect of the disorder. The current data suggest that genetic modifiers in the outbred human genetic background are responsible for this variable phenotype. Preliminary work on the function of Lmx1b in the kidney has been performed using Lmx1b knockout mice (Lmx1b −/−). Although Lmx1b −/− mice die within 24 h after birth, they exhibit the characteristic NPS features including the renal abnormalities. But in contrast to the situation in human, no phenotype could so far be detected in heterozygous Lmx1b +/− mice. This indicates that our understanding of the pathomechanism underlying the nephropathy is still very limited. In an attempt to further evaluate these mechanisms, we tried to induce a renal phenotype in Lmx1b +/− mice, and thus model the human (NPS) situation. We applied unilateral nephrectomy as a model to induce nephron loss and detected a significant (p = 0.02) reduction in compensatory renal growth in heterozygous knockout animals (Lmx1b +/−) compared to Lmx1b +/+ animals, which was correlated with a significantly lower increase in glomerular volume (VG) (p = 0.0034) and an increase in glomerulosclerosis (p = 0.085). Thus, Lmx1b deficiency in heterozygous Lmx1b (Lmx1b +/−) knockout mice profoundly affects the compensatory response to nephron loss. Moreover, this is the first report of a phenotype in heterozygous Lmx1b (Lmx1b +/) knockout animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Banchaabouchi M, Marescau B, D’Hooge R, Van Marck E, De Deyn PP (2001) Biochemical, histological and behavioral consequences of nephrectomy in young and aged mice. Nephron 89:90–100

    Article  CAS  PubMed  Google Scholar 

  • Amann K, Nichols C, Tornig J, Schwarz U, Zeier M, Mall G, Ritz E (1996) Effect of ramipril, nifedipine, and moxonidine on glomerular morphology and podocyte structure in experimental renal failure. Nephrol Dial Transplant 11:1003–1011

    CAS  PubMed  Google Scholar 

  • Bongers EM, Gubler MC, Knoers NV (2002) Nail-patella syndrome. Overview on clinical and molecular findings. Pediatr Nephrol 17:703–712

    Article  PubMed  Google Scholar 

  • Bongers EM, Huysmans FT, Levtchenko E, de Rooy JW, Blickman JG, Admiraal RJ, Huygen PL, Cruysberg JR, Toolens PA, Prins JB, Krabbe PF, Borm GF, Schoots J, van Bokhoven H, van Remortele AM, Hoefsloot LH, van Kampen A, Knoers NV (2005) Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet 13:935–946

    Article  CAS  PubMed  Google Scholar 

  • Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249:F324–F337

    CAS  PubMed  Google Scholar 

  • Chang SG, Kim JH, Lee SJ, Choi JM, Huh JS (2002) Factors influencing contralateral renal hypertrophy after living donor nephrectomy. Transplant Proc 34:1139–1142

    Article  PubMed  Google Scholar 

  • Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L, Lee B, Johnson RL (1998) Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet 19:51–55

    Article  PubMed  Google Scholar 

  • Cingel-Ristic V, Flyvbjerg A, Drop SL (2004) The physiological and pathophysiological roles of the GH/IGF-axis in the kidney: lessons from experimental rodent models. Growth Horm IGF Res 14:418–430

    CAS  PubMed  Google Scholar 

  • Dreyer SD, Morello R, German MS, Zabel B, Winterpacht A, Lunstrum GP, Horton WA, Oberg KC, Lee B (2000) LMX1B transactivation and expression in nail-patella syndrome. Hum Mol Genet 9:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B (1998) Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 19:47–50

    Article  CAS  PubMed  Google Scholar 

  • Flyvbjerg A, Bennett WF, Rasch R, van Neck JW, Groffen CA, Kopchick JJ, Scarlett JA (1999) Compensatory renal growth in uninephrectomized adult mice is growth hormone dependent. Kidney Int 56:2048–2054

    Article  CAS  PubMed  Google Scholar 

  • Flyvbjerg A, Schrijvers BF, De Vriese AS, Tilton RG, Rasch R (2002) Compensatory glomerular growth after unilateral nephrectomy is VEGF dependent. Am J Physiol Endocrinol Metab 283:E362–E366

    CAS  PubMed  Google Scholar 

  • Fogo AB (2001) Progression and potential regression of glomerulosclerosis. Kidney Int 59:804–819

    Article  CAS  PubMed  Google Scholar 

  • Heidet L, Bongers EM, Sich M, Zhang SY, Loirat C, Meyrier A, Broyer M, Landthaler G, Faller B, Sado Y, Knoers NV, Gubler MC (2003) In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am J Pathol 163:145–155

    CAS  PubMed  Google Scholar 

  • Kanda S, Igawa T, Taide M, Eguchi J, Nakamura M, Nomata K, Yamada J, Kanetake H, Saito Y (1993) Transforming growth factor-beta in rat kidney during compensatory renal growth. Growth Regul 3:146–150

    CAS  PubMed  Google Scholar 

  • Kida H, Yoshimura M, Ikeda K, Saitou Y, Noto Y (1991) Pathogenesis of diabetic nephropathy in non-insulin-dependent diabetes mellitus. J Diabet Complications 5:82–83

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Preisig PA (2002) Compensatory renal hypertrophy is mediated by a cell cycle-dependent mechanism. Kidney Int 62:1650–1658

    Article  CAS  PubMed  Google Scholar 

  • McIntosh I, Dreyer SD, Clough MV, Dunston JA, Eyaid W, Roig CM, Montgomery T, Ala-Mello S, Kaitila I, Winterpacht A, Zabel B, Frydman M, Cole WG, Francomano CA, Lee B (1998) Mutation analysis of LMX1B gene in nail-patella syndrome patients. Am J Hum Genet 63:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Meyrier A, Rizzo R, Gubler MC (1990) The Nail-Patella Syndrome. A review. J Nephrol 2:133–140

    Google Scholar 

  • Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, Lee B (2002) Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest 109:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Morello R, Zhou G, Dreyer SD, Harvey SJ, Ninomiya Y, Thorner PS, Miner JH, Cole W, Winterpacht A, Zabel B, Oberg KC, Lee B (2001) Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet 27:205–208

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Kriz W (1992) Glomerular damage after uninephrectomy in young rats II. Mechanical stress on podocytes as a pathway to sclerosis. Kidney Int 42:148–160

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Scharer K, Kriz W (1992) Glomerular damage after uninephrectomy in young rats I. Hypertrophy and distortion of capillary architecture. Kidney Int 42:136–147

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Reddy SR (2001) Compensatory changes in enzymes of arginine metabolism during renal hypertrophy in mice. Comp Biochem Physiol B Biochem Mol Biol 130:585–595

    Article  CAS  PubMed  Google Scholar 

  • Preisig P (1999) What makes cells grow larger and how do they do it? Renal hypertrophy revisited. Exp Nephrol 7:273–283

    Article  CAS  PubMed  Google Scholar 

  • Remuzzi A, Brenner BM, Pata V, Tebaldi G, Mariano R, Belloro A, Remuzzi G (1992) Three-dimensional reconstructed glomerular capillary network: blood flow distribution and local filtration. Am J Physiol 263:F562–F572

    CAS  PubMed  Google Scholar 

  • Rohr C, Prestel J, Heidet L, Hosser H, Kriz W, Johnson RL, Antignac C, Witzgall R (2002) The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest 109:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Sweeney E, Fryer A, Mountford R, Green A, McIntosh I (2003) Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet 40:153–162

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER (1979) Morphometry of the human lung: the state of the art after two decades. Bull Eur Physiopathol Respir 15:999–1013

    CAS  PubMed  Google Scholar 

  • Wesson LG (1989) Compensatory growth and other growth responses of the kidney. Nephron 51:149–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich 423 “Kidney Injury: Pathogenesis and Regenerative Mechanisms” to AW and KA (TP A13 and Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winterpacht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endele, S., Klein, S., Richter, S. et al. Renal phenotype in heterozygous Lmx1b knockout mice (Lmx1b +/−) after unilateral nephrectomy. Transgenic Res 16, 723–729 (2007). https://doi.org/10.1007/s11248-007-9118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9118-7

Keywords

Navigation