Skip to main content
Log in

Oligodendrocytes Death Induced Sensorimotor and Cognitive Deficit in N-nitro-l-arginine methyl Rat Model of Pre-eclampsia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pre-eclampsia (PE) is a pregnancy complicated syndrome that affects multiple organs including the brain that continue post- delivery in both mother and the offspring. We evaluated the expression of oligodendrocytes in the brain of PE rat model through development as well as the cognitive changes and other behavioural modifications that may occur later in the life of offspring of PE-like rat model. Pregnant rats divided into early-onset and late-onset groups were administered with N-nitro- l-arginine methyl (l-NAME) through drinking water at gestational days (GD) 8–17. Rats were allowed free access to water throughout the pregnancy. At GD 19, post-natal day (PND) 1 and 60, rats were sacrificed and brain excised for further analysis. The offspring were subjected to behavioural studies for cognitive and sensorimotor impairments before sacrificed at PND 60. Results showed significant down-regulation in the expression of OLIG2 in PE at GD 19 brain which persists till PND 60. Likewise, there was a significant increase in the latency to locate the platform in Morris water maze, time to traverse the balance beam and reduced hanging time on the wire test between the control and the PE treated. PE could lead to impaired neuronal signalling through demyelination which may contributes significantly to long-term sensorimotor and cognitive deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Women's NCCf, Health CS (2010) Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. BMJ 341:C2207

    Article  Google Scholar 

  2. Govender N, Moodley J, Naicker T (2018) The use of soluble fms-like tyrosine kinase 1/placental growth factor ratio in the clinical management of pre-eclampsia. Afr J Reprod Health 22(4):135–143

    PubMed  Google Scholar 

  3. Moodley J (2011) Maternal deaths associated with hypertension in South Africa: lessons to learn from the Saving Mothers report, 2005–2007: cardiovascular topics. Cardiovasc J Afr 22(1):31–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellamy L, Casas J-P, Hingorani AD, Williams DJ (2007) Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335(7627):974

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown DW, Dueker N, Jamieson DJ, Cole JW, Wozniak MA, Stern BJ, Giles WH, Kittner SJ (2006) Preeclampsia and the risk of ischemic stroke among young women. Stroke 37(4):1055–1059

    Article  PubMed  Google Scholar 

  6. Chan RW, Ho LC, Zhou IY, Gao PP, Chan KC, Wu EX (2015) Structural and functional brain remodeling during pregnancy with diffusion tensor MRI and resting-state functional MRI. PLoS ONE 10(12):e0144328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B (2011) Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension 58:709–715

    Article  CAS  PubMed  Google Scholar 

  8. Ijomone O, Shallie P, Naicker T (2018) Changes in the structure and function of the brain years after Pre-eclampsia. Ageing Res Rev 47:49

    Article  PubMed  Google Scholar 

  9. Pinheiro T, Brunetto S, Ramos J, Bernardi J, Goldani M (2016) Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Origins Health Dis 7(4):391–407

    Article  CAS  Google Scholar 

  10. Pescosolido MF, Yang U, Sabbagh M, Morrow EM (2012) Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders. Dial Clin Neurosci 14(3):239

    Google Scholar 

  11. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R (2010) Pre-eclampsia. Lancet 376(9741):631–644

    Article  PubMed  Google Scholar 

  12. Woodworth MB, Greig LC, Kriegstein AR, Macklis JD (2012) SnapShot: cortical development. Cell 151(4):918–918.e911

  13. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, Adwani S, Wilkinson AR, McCormick K, Sargent I (2012) Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129(6):e1552–e1561

    Article  PubMed  Google Scholar 

  14. Rätsep M, Paolozza A, Hickman A, Maser B, Kay V, Mohammad S, Pudwell J, Smith G, Brien D, Stroman P (2016) Brain structural and vascular anatomy is altered in offspring of pre-eclamptic pregnancies: a pilot study. Am J Neuroradiol 37(5):939–945

    Article  PubMed  PubMed Central  Google Scholar 

  15. Griffith MI, Mann JR, McDermott S (2011) The risk of intellectual disability in children born to mothers with preeclampsia or eclampsia with partial mediation by low birth weight. Hypertens Pregn 30(1):108–115

    Article  Google Scholar 

  16. Dachew BA, Mamun A, Maravilla JC, Alati R (2018) Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br J Psychiatry 212(3):142–147

    Article  PubMed  Google Scholar 

  17. Mann JR, McDermott S (2011) Are maternal genitourinary infection and pre-eclampsia associated with ADHD in school-aged children? J Attent Disord 15(8):667–673

    Article  Google Scholar 

  18. Grace T, Bulsara M, Pennell C, Hands B (2014) Maternal hypertensive diseases negatively affect offspring motor development. Pregn Hypertens 4(3):209

    Article  Google Scholar 

  19. Tong X-K, Trigiani LJ, Hamel E (2019) High cholesterol triggers white matter alterations and cognitive deficits in a mouse model of cerebrovascular disease: benefits of simvastatin. Cell Death Dis 10(2):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirsten TB, Taricano M, Maiorka PC, Palermo-Neto J, Bernardi MM (2010) Prenatal lipopolysaccharide reduces social behavior in male offspring. NeuroImmunoModulation 17(4):240–251

    Article  CAS  PubMed  Google Scholar 

  21. Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 31(6):904–916

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kay VR, Rätsep MT, Cahill LS, Hickman AF, Zavan B, Newport ME, Ellegood J, Laliberte CL, Reynolds JN, Carmeliet P (2018) Effects of placental growth factor deficiency on behavior, neuroanatomy, and cerebrovasculature of mice. Physiol Genomics 50(10):862–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1):123–132

    Article  CAS  PubMed  Google Scholar 

  24. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53

    Article  PubMed  Google Scholar 

  25. Caprariello AV, Mangla S, Miller RH, Selkirk SM (2012) Apoptosis of oligodendrocytes in the central nervous system results in rapid focal demyelination. Ann Neurol 72(3):395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szarka A, Rigó J, Lázár L, Bekő G, Molvarec A (2010) Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol 11(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel JR, Klein RS (2011) Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 585(23):3730–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW (1994) A new animal model for human preeclampsia: ultra-lowdose endotoxin infusion in pregnant rats. Am J Obstet Gynecol 171(1):158–164

    Article  CAS  PubMed  Google Scholar 

  29. Gillis EE, Mooney JN, Garrett MR, Granger JP, Sasser JM (2016) Sildenafil treatment ameliorates the maternal syndrome of preeclampsia and rescues fetal growth in the dahl salt–sensitive rat. Hypertension 67(3):647–653

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy F, Kingdom J, Kenny L, Walsh S (2011) Animal models of preeclampsia; uses and limitations. Placenta 32(6):413–419

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki H, Ohkuchi A, Shirasuna K, Takahashi H, Usui R, Matsubara S, Suzuki M (2014) Animal models of preeclampsia: insight into possible biomarker candidates for predicting preeclampsia. Med J Obstet Gynecol 2(2):1031

    Google Scholar 

  32. Baijnath S, Soobryan N, Mackraj I, Gathiram P, Moodley J (2014) The optimization of a chronic nitric oxide synthase (NOS) inhibition model of pre-eclampsia by evaluating physiological changes. Eur J Obstetr Gynecol Reprod Biol 182:71–75

    Article  CAS  Google Scholar 

  33. Soobryan N, Murugesan S, Phoswa W, Gathiram P, Moodley J, Mackraj I (2017) The effects of sildenafil citrate on uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of pre-eclampsia. Eur J Pharmacol 795:101–107

    Article  CAS  PubMed  Google Scholar 

  34. Ijomone OK, Shallie P, Naicker T (2019) N-nitro-L-arginine methyl model of pre-eclampsia elicits differential IBA1 and EAAT1 expressions in brain. J Chem Neuroanat 100:101660

    Article  CAS  PubMed  Google Scholar 

  35. Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0812s15

    Article  PubMed  Google Scholar 

  36. Yi P-L, Tsai C-H, Lu M-K, Liu H-J, Chen Y-C, Chang F-C (2007) Interleukin-1β mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep 30(4):413–425

    Article  PubMed  Google Scholar 

  37. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  38. Amaral LM, Cunningham MW Jr, Cornelius DC, LaMarca B (2015) Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag 11:403

    PubMed  PubMed Central  Google Scholar 

  39. Aukes A, De Groot JC, Wiegman M, Aarnoudse J, Sanwikarja G, Zeeman G (2012) Long-term cerebral imaging after pre-eclampsia. BJOG 119(9):1117–1122

    Article  CAS  PubMed  Google Scholar 

  40. Cheng S-W, Chou H-C, Tsou K-I, Fang L-J, Tsao P-N (2004) Delivery before 32 weeks of gestation for maternal pre-eclampsia: neonatal outcome and 2-year developmental outcome. Early Hum Dev 76(1):39–46

    Article  PubMed  Google Scholar 

  41. Fields JA, Garovic VD, Mielke MM, Kantarci K, Jayachandran M, White WM, Butts AM, Graff-Radford J, Lahr BD, Bailey KR (2017) Preeclampsia and cognitive impairment later in life. Am J Obstetr Gynecol 217(1):74.e71–74.e11

  42. Liu X, Zhao W, Liu H, Kang Y, Ye C, Gu W, Hu R, Li X (2016) Developmental and functional brain impairment in offspring from preeclampsia-like rats. Mol Neurobiol 53(2):1009–1019

    Article  CAS  PubMed  Google Scholar 

  43. Pellicer B, Herraiz S, Leal A, Simón C, Pellicer A (2011) Prenatal brain damage in preeclamptic animal model induced by gestational nitric oxide synthase inhibition. J Pregn 2011:809569

    Google Scholar 

  44. Fan RG, Portuguez MW, Nunes ML (2013) Cognition, behavior and social competence of preterm low birth weight children at school age. Clinics 68(7):915–921

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sobaih BH (2018) Long-term cognitive outcome of very low birth-weight Saudi preterm infants at the corrected age of 24–36 month. Saudi Med J 39(4):368

    Article  PubMed  PubMed Central  Google Scholar 

  46. Whitehouse AJ, Holt BJ, Serralha M, Holt PG, Kusel MM, Hart PH (2012) Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 129(3):485–493

    Article  PubMed  Google Scholar 

  47. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594

    Article  CAS  PubMed  Google Scholar 

  48. Cardoso FL, Herz J, Fernandes A, Rocha J, Sepodes B, Brito MA, McGavern DB, Brites D (2015) Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflam 12(1):82

    Article  Google Scholar 

  49. Carver AR, Tamayo E, Perez-Polo JR, Saade GR, Hankins GD, Costantine MM (2014) The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia. Int J Dev Neurosci 33:33–40

    Article  CAS  PubMed  Google Scholar 

  50. Lee CE, McArdle A, Griffiths RD (2007) The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr 26(5):524–534

    Article  CAS  PubMed  Google Scholar 

  51. Carson JA, Manolagas SC (2015) Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 80:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laredo SA, Landeros RV, Trainor BC (2014) Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms. Front Neuroendocrinol 35(4):447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Infante SK, Rea HC, Perez-Polo J (2013) Transgenerational effects of neonatal hypoxia-ischemia in progeny. Int J Dev Neurosci 31(6):398–405

    Article  PubMed  Google Scholar 

  54. Lepore E, Casola I, Dobrowolny G, Musarò A (2019) Neuromuscular junction as an entity of nerve-muscle communication. Cells 8(8):906

    Article  PubMed Central  Google Scholar 

  55. Dobrowolny G, Martini M, Scicchitano BM, Romanello V, Boncompagni S, Nicoletti C, Pietrangelo L, De Panfilis S, Catizone A, Bouche M (2018) Muscle expression of SOD1G93A triggers the dismantlement of neuromuscular junction via PKC-theta. Antioxid Redox Signal 28(12):1105–1119

    Article  CAS  PubMed  Google Scholar 

  56. Magrane J, Cortez C, Gan W-B, Manfredi G (2013) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoyos HC, Rinaldi M, Mendez-Huergo SP, Marder M, Rabinovich GA, Pasquini JM, Pasquini LA (2014) Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination. Neurobiol Dis 62:441–455

    Article  CAS  PubMed  Google Scholar 

  58. Pasquini LA, Millet V, Hoyos HC, Giannoni J, Croci D, Marder M, Liu F-T, Rabinovich GA, Pasquini JM (2011) Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ 18(11):1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nave K-A (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244

    Article  CAS  PubMed  Google Scholar 

  60. Hansson SR, Nääv Å, Erlandsson L (2015) Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 5:516–516. https://doi.org/10.3389/fphys.2014.00516

    Article  PubMed  PubMed Central  Google Scholar 

  61. Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Terán Y, Ponce O, Betancourt L, Hernández L, Rada P (2012) Amino acid profile of plasma and cerebrospinal fluid in preeclampsia. Pregn Hypertens 2(4):416–422

    Article  Google Scholar 

  63. Cauli O, Herraiz S, Pellicer B, Pellicer A, Felipo V (2010) Treatment with sildenafil prevents impairment of learning in rats born to pre-eclamptic mothers. Neuroscience 171(2):506–512

    Article  CAS  PubMed  Google Scholar 

  64. Dent KA, Christie KJ, Bye N, Basrai HS, Turbic A, Habgood M, Cate HS, Turnley AM (2015) Oligodendrocyte birth and death following traumatic brain injury in adult mice. PLoS ONE 10(3):e0121541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support of National Research Funding in collaboration with The World Academy of Science (NRF-TWAS) Doctoral fellowship 2016–2019. This research work was supported financially by the College of Heath Sciences (CHS) Bursary awarded by College of Health Science, University of KwaZulu-Natal, Durban, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olayemi K. Ijomone.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijomone, O.K., Shallie, P.D. & Naicker, T. Oligodendrocytes Death Induced Sensorimotor and Cognitive Deficit in N-nitro-l-arginine methyl Rat Model of Pre-eclampsia. Neurochem Res 45, 902–914 (2020). https://doi.org/10.1007/s11064-020-02969-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02969-5

Keywords

Navigation