Skip to main content

Advertisement

Log in

Activation of Liver X Receptor Decreases BACE1 Expression and Activity by Reducing Membrane Cholesterol Levels

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The synthetic Liver X receptor (LXR) activator T0901317 has been reported to exert neuroprotective effect in Alzheimer’s disease, but the relationship between LXR activation and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) remains uncertain. This study investigated the effect of T0901317 on membrane cholesterol levels, BACE1 expression and activity. We found that T0901317 decreased membrane cholesterol levels, reduced BACE1 expression and activity as well as β-secretase cleaved C-terminal fragment (β-CTF) levels in vivo and in vitro. Meanwhile, the expression of ATP-binding membrane cassette transport protein A1 (ABCA1) enhanced. Additionally, inhibition of ABCA1 abrogated the effects of T0901317 on membrane cholesterol levels and β-secretase activity. Moreover, addition of LXR antagonist reversed the effect of T0901317 on ABCA1 mRNA expression, membrane cholesterol levels and β-secretase activity. Our results suggest that activation of LXR may decrease BACE1 expression and activity through a pathway associated with ABCA1-mediated reduction in membrane cholesterol levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    PubMed  CAS  Google Scholar 

  2. Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  3. Yan R, Han P, Miao H et al (2001) The transmembrane domain of the Alzheimer’s beta-secretase (BACE1) determines its late Golgi localization and access to beta-amyloid precursor protein (APP) substrate. J Biol Chem 276:36788–36796

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489–517

    Article  PubMed  CAS  Google Scholar 

  5. Asai M, Hattori C, Iwata N et al (2006) The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem 96:533–540

    Article  PubMed  CAS  Google Scholar 

  6. Hussain I, Hawkins J, Harrison D et al (2007) Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J Neurochem 100:802–809

    Article  PubMed  CAS  Google Scholar 

  7. Kimura R, Devi L, Ohno M (2010) Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J Neurochem 113:248–261

    Article  PubMed  CAS  Google Scholar 

  8. Casserly I, Topol E (2004) Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363:1139–1146

    Article  PubMed  CAS  Google Scholar 

  9. Thirumangalakudi L, Prakasam A, Zhang R et al (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475–485

    Article  PubMed  CAS  Google Scholar 

  10. Hooijmans CR, Van der Zee CE, Dederen PJ et al (2009) DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 33:482–498

    Article  PubMed  CAS  Google Scholar 

  11. Kivipelto M, Helkala EL, Laakso MP et al (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322:1447–1451

    Article  PubMed  CAS  Google Scholar 

  12. Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6:345–351

    Article  PubMed  CAS  Google Scholar 

  13. Ghribi O, Larsen B, Schrag M et al (2006) High cholesterol content in neurons increases BACE, beta-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 200:460–467

    Article  PubMed  CAS  Google Scholar 

  14. Ullrich C, Pirchl M, Humpel C (2010) Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci 45(4):408–417

    Google Scholar 

  15. Refolo LM, Pappolla MA, LaFrancois J et al (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8:890–899

    Article  PubMed  CAS  Google Scholar 

  16. Chauhan NB, Siegel GJ, Feinstein DL (2004) Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain. Neurochem Res 29:1897–1911

    Article  PubMed  CAS  Google Scholar 

  17. Cordy JM, Hussain I, Dingwall C et al (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–11740

    Article  PubMed  CAS  Google Scholar 

  18. Whitney KD, Watson MA, Collins JL et al (2002) Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 16:1378–1385

    Article  PubMed  CAS  Google Scholar 

  19. Sun Y, Yao J, Kim TW et al (2003) Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278:27688–27694

    Article  PubMed  CAS  Google Scholar 

  20. Liang Y, Lin S, Beyer TP et al (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 88:623–634

    Article  PubMed  CAS  Google Scholar 

  21. Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 8:1243–1248

    Article  PubMed  CAS  Google Scholar 

  22. Eckert GP, Vardanian L, Rebeck GW et al (2007) Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neurosci Lett 423:47–52

    Article  PubMed  CAS  Google Scholar 

  23. Repa JJ, Li H, Frank-Cannon TC et al (2007) Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27:14470–14480

    Article  PubMed  CAS  Google Scholar 

  24. Koldamova RP, Lefterov IM, Staufenbiel M et al (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 280:4079–4088

    Article  PubMed  CAS  Google Scholar 

  25. Lefterov I, Bookout A, Wang Z et al (2007) Expression profiling in APP23 mouse brain: inhibition of Abeta amyloidosis and inflammation in response to LXR agonist treatment. Mol Neurodegener 2:20

    Article  PubMed  Google Scholar 

  26. Riddell DR, Zhou H, Comery TA et al (2007) The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 34:621–628

    Article  PubMed  CAS  Google Scholar 

  27. Zelcer N, Khanlou N, Clare R et al (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 104:10601–10606

    Article  PubMed  CAS  Google Scholar 

  28. Jiang Q, Lee CY, Mandrekar S et al (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693

    Article  PubMed  CAS  Google Scholar 

  29. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614

    Article  PubMed  CAS  Google Scholar 

  30. Chen G, Bower KA, Ma C et al (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18:1162–1164

    Article  PubMed  CAS  Google Scholar 

  31. Cecchi C, Rosati F, Pensalfini A et al (2008) Seladin-1/DHCR24 protects neuroblastoma cells against Abeta toxicity by increasing membrane cholesterol content. J Cell Mol Med 12:1990–2002

    Article  PubMed  CAS  Google Scholar 

  32. Neufeld EB, Cooney AM, Pitha J et al (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613

    Article  PubMed  CAS  Google Scholar 

  33. Smith JD, Le Goff W, Settle M et al (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45:635–644

    Article  PubMed  CAS  Google Scholar 

  34. Fielding PE, Nagao K, Hakamata H et al (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39:14113–14120

    Article  PubMed  CAS  Google Scholar 

  35. Wang N, Silver DL, Thiele C et al (2001) ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276:23742–23747

    Article  PubMed  CAS  Google Scholar 

  36. Forman BM, Ruan B, Chen J et al (1997) The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc Natl Acad Sci USA 94:10588–10593

    Article  PubMed  CAS  Google Scholar 

  37. Gan X, Kaplan R, Menke JG et al (2001) Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J Biol Chem 276:48702–48708

    Article  PubMed  CAS  Google Scholar 

  38. Vanmierlo T, Rutten K, Dederen J et al (2009) Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging [Epub ahead of print]

  39. Fitz NF, Cronican A, Pham T et al (2010) Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 30:6862–6872

    Article  PubMed  CAS  Google Scholar 

  40. Tamagno E, Parola M, Bardini P et al (2005) Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92:628–636

    Article  PubMed  CAS  Google Scholar 

  41. Sun X, He G, Qing H et al (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA 103:18727–18732

    Article  PubMed  CAS  Google Scholar 

  42. Zhiyou C, Yong Y, Shanquan S et al (2009) Upregulation of BACE1 and beta-Amyloid Protein Mediated by Chronic Cerebral Hypoperfusion Contributes to Cognitive Impairment and Pathogenesis of Alzheimer’s Disease. Neurochem Res 34(7):1226–1235

    Google Scholar 

  43. Ehehalt R, Keller P, Haass C et al (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    Article  PubMed  CAS  Google Scholar 

  44. Wolozin B (2004) Cholesterol and the biology of Alzheimer’s disease. Neuron 41:7–10

    Article  PubMed  CAS  Google Scholar 

  45. Koldamova RP, Lefterov IM, Ikonomovic MD et al (2003) 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J Biol Chem 278:13244–13256

    Article  PubMed  CAS  Google Scholar 

  46. Wang N, Tall AR (2003) Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 23:1178–1184

    Article  PubMed  CAS  Google Scholar 

  47. Rossner S, Sastre M, Bourne K et al (2006) Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer’s disease. Prog Neurobiol 79:95–111

    Article  PubMed  CAS  Google Scholar 

  48. Fukumoto H, Cheung BS, Hyman BT et al (2002) Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381–1389

    Article  PubMed  Google Scholar 

  49. Holsinger RM, McLean CA, Beyreuther K et al (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51:783–786

    Article  PubMed  CAS  Google Scholar 

  50. Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (1–40). Relevance to Alzheimer’s disease. Biochemistry 36:10571–10580

    Article  PubMed  CAS  Google Scholar 

  51. Huttunen HJ, Peach C, Bhattacharyya R et al (2009) Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. FASEB J 23:3819–3828

    Article  PubMed  CAS  Google Scholar 

  52. Saluja I, Paulson H, Gupta A et al (2009) X11alpha haploinsufficiency enhances Abeta amyloid deposition in Alzheimer’s disease transgenic mice. Neurobiol Dis 36:162–168

    Article  PubMed  CAS  Google Scholar 

  53. Xiong M, Zhang T, Zhang LM et al (2008) Caspase inhibition attenuates accumulation of beta-amyloid by reducing beta-secretase production and activity in rat brains after stroke. Neurobiol Dis 32:433–441

    Article  PubMed  CAS  Google Scholar 

  54. Liang X, Wang Q, Hand T et al (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25:10180–10187

    Article  PubMed  CAS  Google Scholar 

  55. Li L, Zhang X, Yang D et al (2009) Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 30:1091–1098

    Article  PubMed  CAS  Google Scholar 

  56. Chevallier N, Vizzavona J, Marambaud P et al (1997) Cathepsin D displays in vitro beta-secretase-like specificity. Brain Res 750:11–19

    Article  PubMed  CAS  Google Scholar 

  57. Gruninger-Leitch F, Schlatter D, Kung E et al (2002) Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases. J Biol Chem 277:4687–4693

    Article  PubMed  CAS  Google Scholar 

  58. Andrau D, Dumanchin-Njock C, Ayral E et al (2003) BACE1- and BACE2-expressing human cells: characterization of beta-amyloid precursor protein-derived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors. J Biol Chem 278:25859–25866

    Article  PubMed  CAS  Google Scholar 

  59. Wang X, Su B, Siedlak SL et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323

    Article  PubMed  CAS  Google Scholar 

  60. Fan X, Luo G, Yang D et al (2010) Critical role of lysosome and its associated protein cathepsin D in manganese-induced toxicity in cultured midbrain astrocyte. Neurochem Int 56:291–300

    Article  PubMed  CAS  Google Scholar 

  61. Colella R, Lu G, Glazewski L et al (2010) Induction of cell death in neuroblastoma by inhibition of cathepsins B and L. Cancer Lett 294:195–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express thanks to Prof. Guomin Zhou and Prof. Zulin Chen for introducing the animal model into our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwen Peng or Ruixi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, W., Sun, Y., Wang, Z. et al. Activation of Liver X Receptor Decreases BACE1 Expression and Activity by Reducing Membrane Cholesterol Levels. Neurochem Res 36, 1910–1921 (2011). https://doi.org/10.1007/s11064-011-0513-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0513-3

Keywords

Navigation