Skip to main content

Advertisement

Log in

Antioxidant, anti-inflammatory and healing potential of ethyl acetate fraction of Bauhinia ungulata L. (Fabaceae) on in vitro and in vivo wound model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present work aimed to investigate the antioxidant, anti-inflammatory and wound healing potential of ethyl acetate fraction from Bauhinia ungulata L. (FABU) on in vitro and in vivo models. Wound healing assay using human lung adenocarcinoma A549 cell line was employed to evaluate the ability of FABU in modulating cell migration. In addition, a surgical wound model in C57BL/6 mice was used to study the healing potential of FABU incorporated into gel carbomer 940 (Carbopol®). Evaluation of lipid peroxidation, inflammatory and anti-inflammatory mediator gene expression, rate of wound closure, and histological analysis were done. FABU significantly reduced the gap area in in vitro wound healing assay, 24 h after treatment. In the animal model, FABU at 0.5% topically applied once-daily for 5 days to the surgical wounds significantly reduced the lesion area. Moreover, it significantly decreased the levels of lipid peroxidation in the lesions and decreased the relative gene expression levels of IL-1β and TNF-α in the injured region. In conclusion, our study suggests that Bauhinia ungulata can effectively promote the wound healing, probably by regulating the inflammatory environment during the early stages of the process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dorai A (2012) Wound care with traditional, complementary and alternative medicine. Indian J Plast Surg 45(2):418

    Article  PubMed  PubMed Central  Google Scholar 

  2. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murphy PS, Evans GRD (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:1–8

    Article  Google Scholar 

  4. Ibrahim N, Wong SK, Mohamed IN, Mohamed N, Chin KY, Ima-Nirwana S, Shuid AN (2018) Wound healing properties of selected natural products. Int J Environ Res Public Health 15(11):1–23

    Article  Google Scholar 

  5. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Google Scholar 

  6. Cano Sanchez M, Lancel S, Boulanger E, Neviere R (2018) Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. https://doi.org/10.3390/antiox7080098

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karin M, Clevers H (2016) Reparative inflammation takes charge of tissue regeneration. Nature 529(7586):307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2(5):215–224

    Article  Google Scholar 

  9. Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17(2):1–41

    Article  Google Scholar 

  10. da Paula CS, Canteli VCD, Hirota BCK, Campos R, de Oliveira VB, Kalegari M, Silva CB, Silva GM, Miguel OG, Miguel MD (2014) Potencial antioxidante in vitro das folhas da Bauhinia ungulata L. Rev Cienc Farm Basica Aplicada 35(2):217–222

    Google Scholar 

  11. da Paula CS, Christina M, Konopatzki BC, De Souza AM, Bezerra C, Miguel OG (2015) Caracterização fitoquímica, toxicidade e avaliação preliminar da atividade antibacteriana das folhas de Bauhinia ungulata L. Phytochemical characterization, preliminary toxicity and evaluation of the antibacterial activity of the leaves of Bauhinia ung. Rev Bras Farm 96(2):1315–1334

    Google Scholar 

  12. Neto MM, Neto MA, Filho RB, Lima MAS, Silveira ER (2008) Flavonoids and alkaloids from leaves of Bauhinia ungulata L. Biochem Syst Ecol 36(3):227–229

    Article  Google Scholar 

  13. de Sousa LM, de Carvalho JL, da Silva HC, Lemos TLG, Arriaga AMC, Braz-Filho R, Militão GCG, Silva TDS, Ribeiro PRV, Santiago GMP (2016) New cytotoxic bibenzyl and other constituents from Bauhinia ungulata L. (Fabaceae). Chem Biodivers 13(12):1630–1635

    Article  PubMed  Google Scholar 

  14. de Rodrigues RO, Yaochite JNU, Braga MA, de Sousa AR, Sasahara GL, da Fonseca SGC, Araújo TDV, Santiago GMP, Sousa LM, Carvalho JL, Nascimento FBSA, Nobre Júnior HV, Nagao-Dias AT (2019) Antioxidant and anti-inflammatory activities of Bauhinia ungulata L. (Fabaceae) on LPS-stimulated RAW 264.7 Cells. Pharmacogn J 11(1):37–42

    Article  CAS  Google Scholar 

  15. Galvão MAM, de Arruda AO, Bezerra ICF, Ferreira MRA, Soares LAL (2018) Evaluation of the folin-ciocalteu method and quantification of total tannins in stem barks and pods from Libidibia ferrea (Mart. ex Tul) L. P Queiroz Braz Arch Biol Technol 61:1–20

    Google Scholar 

  16. Sartori CJ, Castro AHF, Mori FA (2014) Teores de fenóis totais e taninos nas cascas de angico-vermelho (Anadenanthera peregrina). Floresta e Ambiente 21(3):394–400

    Article  Google Scholar 

  17. Ameeramja J, Panneerselvam L, Govindarajan V, Jeyachandran S, Baskaralingam V, Perumal E (2016) Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. J Hazard Mater 301:554–565

    Article  CAS  PubMed  Google Scholar 

  18. Lodhi S, Jain AP, Sharma VK, Singhai AK (2013) Wound-healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on streptozotocin-induced diabetic rats. J Herbs Spices Med Plants 19:191–205

    Article  CAS  Google Scholar 

  19. Jia Y, Zhao G, Jia J (2008) Preliminary evaluation: the effects of Aloe ferox Miller and Aloe arborescens Miller on wound healing. J Ethnopharmacol 120(2):181–189

    Article  PubMed  Google Scholar 

  20. Naito R, Nishinakamura H, Watanabe T, Nakayama J, Kodama S (2014) Edaravone, a free radical scavenger, accelerates wound healing in diabetic mice. Wounds 26(6):163–171

    PubMed  Google Scholar 

  21. Wang X, Ge J, Tredget EE, Wu Y (2013) The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc 8(2):302–309. https://doi.org/10.1038/nprot.2013.002

    Article  CAS  PubMed  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  24. Turabelidze A, Guo S, Dipietro LA (2010) Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. Wound Repair Regen 18(5):460–466

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barthel R, Aberdam D (2005) Epidermal stem cells. J Eur Acad Dermatol Venereol 19(4):405–413

    Article  CAS  PubMed  Google Scholar 

  26. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen MC, Le DT, Kamei K, Dang TPT (2017) Wound healing activity of Streptocaulon juventas root ethanolic extract. Wound Repair Regen 25(6):956–963

    Article  PubMed  Google Scholar 

  28. Özay Y, Güzel S, Yumrutaş Ö, Pehlivanoğlu B, Erdoğdu İH, Yildirim Z, Türk BA, Darcan S (2019) Wound healing effect of kaempferol in diabetic and nondiabetic rats. J Surg Res 233:284–296

    Article  PubMed  Google Scholar 

  29. Gopalakrishnan A, Ram M, Kumawat S, Tandan S, Kumar D (2016) Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and {TGF}-β1. Indian J Exp Biol 54(3):187–195

    CAS  PubMed  Google Scholar 

  30. Ghosh PK, Gaba A (2013) Phyto-extracts in wound healing. J Pharm Pharm Sci 16(5):760–820

    Article  PubMed  Google Scholar 

  31. Ergene Öz B, Saltan İşcan G, Küpeli Akkol E, Süntar İ, Bahadır Acıkara Ö (2018) Isoflavonoids as wound healing agents from Ononidis Radix. J Ethnopharmacol 211:384–393

    Article  PubMed  Google Scholar 

  32. Moghadamtousi SZ, Rouhollahi E, Hajrezaie M, Karimian H, Abdulla MA, Kadir HA (2015) Annona muricata leaves accelerate wound healing in rats via involvement of Hsp70 and antioxidant defence. Int J Surg 18:110–117

    Article  PubMed  Google Scholar 

  33. Werner S, Grose R (2017) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    Article  Google Scholar 

  34. Biswas TK, Pandit S, Chakrabarti S, Banerjee S, Poyra N, Seal T (2017) Evaluation of Cynodon dactylon for wound healing activity. J Ethnopharmacol 197:128–137

    Article  PubMed  Google Scholar 

  35. Ribeiro G, Silva MAG, Martins CB, Borges VP, Neto JCL (2013) Associação fitoterápica no tratamento de feridas cutâneas induzidas em equinos. Arq Bras Med Vet Zootec 65(5):1427–1433

    Article  Google Scholar 

  36. Hernandes L, da Silva Pereira LM, Palazzo F, de Mello JCP (2010) Wound-healing evaluation of ointment from Stryphnodendron adstringens (barbatimão) in rat skin. Braz J Pharm Sci 46(3):431–436

    Article  Google Scholar 

  37. Kamoun EA, Kenawy ERS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinotti S, Ranzato E (2019) Scratch wound healing assay. Methods in molecular biology. Humana Press, Totowa https://doi.org/10.1007/7651_2019_259

  39. Grimmig R, Babczyk P, Gillemot P, Schmitz K-P, Schulze M, Tobiasch E (2019) Development and evaluation of a prototype scratch apparatus for wound assays adjustable to different forces and substrates. Appl Sci 9(20):4414

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Laboratório de Análises Clínicas e Toxicológicas, Department of Clinical Analysis and Toxicological, Faculty of Pharmacy, Universidade Federal do Ceará, for allowing the use of the Real-Time PCR Thermal Cycler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael de Oliveira Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Rodrigues, R., Yaochite, J.N.U., Sasahara, G.L. et al. Antioxidant, anti-inflammatory and healing potential of ethyl acetate fraction of Bauhinia ungulata L. (Fabaceae) on in vitro and in vivo wound model. Mol Biol Rep 47, 2845–2859 (2020). https://doi.org/10.1007/s11033-020-05332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05332-7

Keywords

Navigation