Skip to main content
Log in

In vitro motility of native thin filaments from Drosophila indirect flight muscles reveals that the held-up 2 TnI mutation affects calcium activation

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

A procedure for the isolation of regulated native thin filaments from the indirect flight muscles (IFM) of Drosophila melanogaster is described. These are the first striated invertebrate thin filaments to show Ca-regulated in vitro motility. Regulated native thin filaments from wild type and a troponin I mutant, held-up-2, were compared by in vitro motility assays that showed that the mutant troponin I caused activation of motility at pCa values higher than wild type. The held-up2 mutation, in the sole troponin I gene (wupA) in the Drosophila genome, is known to cause hypercontraction of the IFM and other muscles in vivo leading to their eventual destruction. The mutation causes substitution of alanine by valine at a homologous and completely conserved troponin I residue (A25) in the vertebrate skeletal muscle TnI isoform. The effects of the held-up 2 mutation on calcium activation of thin filament in vitro motility are discussed with respect to its effects on hypercontraction and dysfunction. Previous electron microscopy and 3-dimensional reconstruction studies showed that the tropomyosin of held-up 2 thin filaments occupies positions associated with the so-called ‘closed’ state, but independently of calcium concentration. This is discussed with respect to calcium dependent regulation of held-up-2 thin filaments in in vitro motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agianian B, Krzic U, Qiu F, Linke WA, Leonard K, Bullard B (2004) A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J 23:772–779

    Article  CAS  PubMed  Google Scholar 

  • Andrianantoandro E, Blanchoin L, Sept D, McCammon JA, Pollard TD (2001) Kinetic mechanism of end-to-end annealing of actin filaments. J Mol Biol 312:721–730

    Article  CAS  PubMed  Google Scholar 

  • Ball E, Karlik CC, Beall CJ, Saville DL, Sparrow JC, Bullard B, Fyrberg EA (1987) Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51:221–228

    Article  CAS  PubMed  Google Scholar 

  • Barbas JA, Galceran J, Torroja L, Prado A, Ferrus A (1993) Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol 13:1433–1439

    CAS  PubMed  Google Scholar 

  • Beall CJ, Fyrberg E (1991) Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol 114:941–951

    Article  CAS  PubMed  Google Scholar 

  • Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev 3:131–140

    Article  CAS  PubMed  Google Scholar 

  • Bernstein SI, O’Donnell PT, Cripps RM (1993) Molecular genetic analysis of muscle development, structure and function in Drosophila. Int J Cytol 143:63–152

    Article  CAS  Google Scholar 

  • Boussof SE, Agianian B, Bullard B, Geeves MA (2007) The regulation of myosin binding to actin filaments by Lethocerus troponin. J Mol Biol 373:587–598

    Article  Google Scholar 

  • Bullard B, Bell J, Craig R, Leonard K (1985) Arthrin: a new actin-like protein in insect flight muscle. J Mol Biol 182:443–454

    Article  CAS  PubMed  Google Scholar 

  • Bullard B, Leonard K, Larkins A, Butcher G, Karlik C, Fyrberg E (1988) Troponin of asynchronous flight muscle. J Mol Biol 204:621–637

    Article  CAS  PubMed  Google Scholar 

  • Cammarato A, Hatch V, Saide J, Craig R, Sparrow JC, Tobacman LS, Lehman W (2004) Drosophila muscle regulation characterized by electron microscopy and three-dimensional reconstruction of thin filament mutants. J Mol Biol 86:1618–1624

    CAS  Google Scholar 

  • Cammarato A, Craig R, Sparrow JC, Lehman W (2005) E93 K charge reversal on actin perturbs steric regulation of thin filaments. J Mol Biol 347:889–894

    Article  CAS  PubMed  Google Scholar 

  • Clayton JD, Cripps RM, Sparrow JC, Bullard B (1998) Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 19:117–127

    Article  CAS  PubMed  Google Scholar 

  • Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137:151–164

    CAS  PubMed  Google Scholar 

  • Fraser ID, Marston SB (1995) In vitro motility analysis of actin-tropomyosin regulation by troponin and calcium. The thin filament is switched as a single cooperative unit. J Biol Chem 270:7836–7841

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Homsher E, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1973) Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spring Harbor Symp Quant Biol 37:341–352

    Google Scholar 

  • Karlik CC, Mahaffey JW, Coutu MD, Fyrberg EA (1984) Organization of contractile protein genes within the 88F subdivision of the D. melanogaster third chromosome. Cell 37:469–481

    Article  CAS  PubMed  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQ, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196:399–416

    Article  CAS  PubMed  Google Scholar 

  • Lehman W, Rosol M, Tobacman L, Thomas L, Craig R (2001) Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol 307:739–744

    Article  CAS  PubMed  Google Scholar 

  • Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85:55–71

    Article  CAS  PubMed  Google Scholar 

  • Marston S (1990) Stoichiometry and stability of caldesmon in native thin filaments from sheep aorta smooth muscle. Biochem J 272:305–310

    CAS  PubMed  Google Scholar 

  • Mateos J, Herranz R, Domingo A, Sparrow J, Marco R (2006) The structural role of high molecular weight tropomyosins in dipteran indirect flight muscle and the effect of phosphorylation. J Muscle Res Cell Motil 27:189–201

    Article  CAS  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  CAS  PubMed  Google Scholar 

  • Mogami K, Hotta Y (1981) Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet 183:409–417

    Article  CAS  PubMed  Google Scholar 

  • Naimi B, Harrison A, Cummins M, Nongthomba U, Clark S, Ferrus A, Sparrow JC (2001) A tropomyosin-2 mutation suppresses a troponin-I myopathy in Drosophila. Mol Biol Cell 12:1529–1539

    CAS  PubMed  Google Scholar 

  • Noguchi T, Kihara Y, Begin KJ, Gorga JA, Palmiter KA, LeWinter MM, VanBuren P (2003) Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: amelioration by endothelial blockade. Circulation 107:630–635

    Article  CAS  PubMed  Google Scholar 

  • Nongthomba U, Cummins M, Clark S, Vigoreaux JO, Sparrow JC (2003) Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164:209–222

    CAS  PubMed  Google Scholar 

  • Nongthomba U, Clark S, Cummins M, Ansari M, Stark M, Sparrow JC (2004) Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J Cell Sci 117:1795–1805

    Article  CAS  PubMed  Google Scholar 

  • Nongthomba U, Ansari MA, Stark M, Sparrow JC (2007) Aberrant splicing of a jump and flight muscle-specific exon in the Drosophila troponin-T gene. Genetics 177:295–306

    Article  CAS  PubMed  Google Scholar 

  • Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Enzymol 85:164–181

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Squire JM (1973) The role of tropomyosin in muscle regulation: analysis of X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    Article  CAS  PubMed  Google Scholar 

  • Peckham M, Molloy JE, Sparrow JC, White DCS (1990) Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil 11:203–215

    Article  CAS  PubMed  Google Scholar 

  • Pringle JWS (1978) The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc London B Biol Sci 201:107–130

    Article  CAS  Google Scholar 

  • Qiu F, Lakey A, Agianian B, Hutchings A, Butcher GW, Labeit S, Leonard K, Bullard B (2003) Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect. Biochem J 371:811–821

    Article  CAS  PubMed  Google Scholar 

  • Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA, Sparrow JC (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 274:28321–28328

    Article  CAS  PubMed  Google Scholar 

  • Ruiz T, Bullard B, Lepault J (1998) Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments. J Muscle Res Cell Motil 19:353–364

    Article  CAS  PubMed  Google Scholar 

  • Tassieri M, Evans M, Barbu-Tudoran L, Trinick J, Waigh T (2008) The self-assembly, elasticity and dynamics of cardiac thin filaments. Biophys J 94:2170–2178

    Google Scholar 

  • Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y (1998) Crystal structure of troponin C in complex with troponin I fragment at 2.3-Å resolution. Proc Natl Acad Sci USA 95:4847–4852

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R, Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 77:985–992

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Yoshio M, Kojima H, Oiwa K (2001) An in vitro assay reveals essential protein components for the “catch” state of invertebrate muscle. Proc Natl Acad Sci USA 98:6635–6640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Antibodies were kindly provided by Dr. Belinda Bullard, University of York and Dr. Alberto Ferrus, Cajal Institute, Madrid. We thank Dr Belinda Bullard for her helpful advice and the British Heart Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Sparrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikhorev, P.G., Vikhoreva, N.N., Cammarato, A. et al. In vitro motility of native thin filaments from Drosophila indirect flight muscles reveals that the held-up 2 TnI mutation affects calcium activation. J Muscle Res Cell Motil 31, 171–179 (2010). https://doi.org/10.1007/s10974-010-9221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9221-x

Keywords

Navigation