Skip to main content
Log in

Measuring the Limping of Processive Motor Proteins

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The cells of all living creatures rely on a host of molecular scale machines to perform vital tasks. In the spirit of this special issue of J. Stat. Phys., we describe briefly the background concerning one class of these machines, namely, processive motor proteins such as, specifically, conventional kinesin, myosin V, and cytoplasmic dynein. These single-molecule motors tow cellular cargoes under load along oriented linear molecular tracks within the cell taking many hundreds of consecutive discrete steps. Experiments aimed at understanding the mechanism of the stepping process have recently led to observations of ‘‘limping” in which alternate steps are found to be slow or fast, respectively. Reliable experimental measurements of the ‘‘true” or intrinsic limping factor, L 0, understood as the ideal overall ratio of the longer dwell times prior to one set of steps to the shorter times for the interlaced steps, provide a route to improving appropriate biomechanochemical models. These, in turn, may help reveal and quantify details of the underlying asymmetric walking mechanisms. However, a difficulty is posed in measuring L 0 by the inescapable thermal fluctuations that act on an individual motor molecule that takes only a finite number, say, n odd and n even steps under fixed load, etc. Accordingly, we treat the stochastic issues theoretically for some basic kinetic motor models and experimental procedures, obtaining various exact bounds and explicit results for distributions and their moments. Typically for n≲10 the observed mean values, 〈L n 〉, significantly overestimate L 0. However, the medians and rescaled means, \({\overline{L}}_{n}^{\, *}=\langle L_{n}\rangle(n-1)/n\), provide better guides to the value of L 0 provided it is not too close to unity. Separately, we present figures, a table, and approximate formulas intended to assist practically those designing, undertaking, and assessing experiments on limping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amos, L.A., Klug, A.: Arrangement of subunits in flagellar microtubules. Proc. Natl. Acad. Sci. USA 14, 523–549 (1974)

    Google Scholar 

  2. Asbury, C.L.: Kinesin: world’s tiniest biped. Curr. Opin. Cell Biol. 17, 89–97 (2005)

    Article  Google Scholar 

  3. Asbury, C.L., Fehr, A.N., Block, S.M.: Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  Google Scholar 

  4. Block, S.M.: Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007)

    Article  ADS  Google Scholar 

  5. Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    Article  ADS  Google Scholar 

  6. Block, S.M., Asbury, C.L., Shaevitz, J.W., Lang, M.J.: Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. USA 100, 2351–2356 (2003)

    Article  ADS  Google Scholar 

  7. Bray, D.: Cell Movements: From Molecules to Motility, 2nd edn. Garland, New York (2001)

    Google Scholar 

  8. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  ADS  Google Scholar 

  9. Cooper, G.M.: The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Sunderland (2000)

    Google Scholar 

  10. Coppin, C.M., Finer, J.T., Spudich, J.A., Vale, R.D.: Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl. Acad. Sci. USA 93, 1913–1917 (1996)

    Article  ADS  Google Scholar 

  11. Coppin, C.M., Pierce, D.W., Hsu, L., Vale, R.D.: The load dependence of kinesin’s mechanical cycle. Proc. Natl. Acad. Sci. USA 94, 8539–8544 (1997)

    Article  ADS  Google Scholar 

  12. Coy, D.L., Wagenbach, M., Howard, J.: Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999)

    Article  Google Scholar 

  13. Cross, R.A.: Molecular motors: Kinesin’s interesting limp. Curr. Biol. 14, R158–R159 (2004)

    Google Scholar 

  14. Dagenbach, E.M., Endow, S.A.: A new kinesin tree. J. Cell. Sci. 117, 3–7 (2004)

    Article  Google Scholar 

  15. Derrida, B.: Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. Erdélyi, A.: Higher Transendental Functions. Bateman Manuscript Project, vol. I & II. McGraw-Hill, New York (1953)

    Google Scholar 

  17. Fehr, A.N., Asbury, C.L., Block, S.M.: Kinesin steps do not alternate in size. Biophys. J. 94, L20–L22 (2008)

    Article  Google Scholar 

  18. Fehr, A.N., Gutiérrez-Medina, B., Asbury, C.L., Block, S.M.: On the origin of kinesin limping. Biophys. J. 97, 1663–1670 (2009)

    Article  ADS  Google Scholar 

  19. Fisher, M.E., Kim, Y.C.: Kinesin crouches to sprint but resists pushing. Proc. Natl. Acad. Sci. USA 102, 16209–16214 (2005)

    Article  ADS  Google Scholar 

  20. Fisher, M.E., Kolomeisky, A.B.: Molecular motors and the forces they exert. Physica A 274, 241–266 (1999)

    Article  ADS  Google Scholar 

  21. Fisher, M.E., Kolomeisky, A.B.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. USA 98, 7748–7753 (2001)

    Article  ADS  Google Scholar 

  22. Greenleaf, W.J., Woodside, M.T., Block, S.M.: High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007)

    Article  Google Scholar 

  23. Guydosh, N.R., Block, S.M.: Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. USA 103, 8054–8059 (2006)

    Article  ADS  Google Scholar 

  24. Guydosh, N.R., Block, S.M.: Not so lame after all: Kinesin still walks with a hobbled head. J. Gen. Physiol. 130, 441–444 (2007)

    Article  Google Scholar 

  25. Hackney, D.D.: Processive motor movement. Science 316, 58–59 (2007)

    Article  Google Scholar 

  26. Higuchi, H., Muto, E., Inoue, Y., Yanagida, T.: Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl. Acad. Sci. USA 94, 4395–4400 (1997)

    Article  ADS  Google Scholar 

  27. Higuchi, H., Bronner, C.E., Park, H.W., Endow, S.A.: Rapid double 8-nm steps by a kinesin mutant. EMBO J. 23, 2993–2999 (2004)

    Article  Google Scholar 

  28. Houdusse, A., Carter, A.P.: Dynein swings into action. Cell 136, 395–396 (2009)

    Article  Google Scholar 

  29. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  30. Hua, W., Young, E.C., Fleming, M.L., Gelles, J.: Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997)

    Article  ADS  Google Scholar 

  31. Hyeon, C., Klumpp, S., Onuchic, J.N.: Kinesin’s backsteps under mechanical load. Phys. Chem. Chem. Phys. 11, 4899–4910 (2009)

    Article  Google Scholar 

  32. Kaseda, K., Higuchi, H., Hirose, K.: Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 23, 1079–1082 (2003)

    Article  Google Scholar 

  33. Kim, Y.C., Fisher, M.E.: Vectorial loading of processive motor proteins: implementing a landscape picturer. J. Phys., Condens. Matter 17, S3821–S3838 (2005)

    Article  ADS  Google Scholar 

  34. Kojima, H., Muto, E., Higuchi, H., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997)

    Article  Google Scholar 

  35. Kolomeisky, A.B., Fisher, M.E.: Extended kinetic models with waiting-time distributions: Exact results. J. Chem. Phys. 113, 10867 (2000)

    Article  ADS  Google Scholar 

  36. Kolomeisky, A.B., Fisher, M.E.: Periodic sequential kinetic models with jumping, branching and deaths. Physica A 279, 1–20 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  ADS  Google Scholar 

  38. Kolomeisky, A.B., Stukalin, E.B., Popov, A.A.: Understanding mechanochemical coupling in kinesins using first-passage-time processes. Phys. Rev. E 71, 031902 (2005)

    Article  ADS  Google Scholar 

  39. Lang, M.J., Asbury, C.L., Shaevitz, J.W., Block, S.M.: An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002)

    Article  ADS  Google Scholar 

  40. Mallik, R., Carter, B.C., Lex, S.A., King, S.J., Gross, S.P.: Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004)

    Article  ADS  Google Scholar 

  41. Mandelkow, E., Thomas, J., Cohen, C.: Microtubule structure at low resolution by x-ray diffraction. Proc. Natl. Acad. Sci. USA 74, 3370–3374 (1977)

    Article  ADS  Google Scholar 

  42. Mehta, A.D., Rock, R.S., Rief, M., Spudich, J.A., Mooseker, M.S., Cheney, R.E.: Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)

    Article  ADS  Google Scholar 

  43. Meyhöfer, E., Howard, J.: The force generated by a single kinesin molecule against an elastic load. Proc. Natl. Acad. Sci. USA 92, 574–578 (1995)

    Article  ADS  Google Scholar 

  44. Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002)

    Article  Google Scholar 

  45. Ökten, Z., Churchman, L.S., Rock, R.S., Spudich, J.A.: Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol. 11, 884–887 (2004)

    Article  Google Scholar 

  46. Ou-Yang, H.D., Wei, M.T.: Complex fluids: Probing mechanical properties of biological systems with optical tweezers. Annu. Rev. Phys. Chem. 61, 421–440 (2010)

    Article  Google Scholar 

  47. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  48. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Roberts, A.J., Numata, N., Walker, M.L., Kato, Y.S., Malkova, B., Kon, T., Ohkura, R., Arisaka, F., Knight, P.J., Sutoh, K., Burgess, S.A.: AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009)

    Article  Google Scholar 

  50. Rock, R.S., Rice, S.E., Wells, A.L., Purcell, T.J., Spudich, J.A., Sweeney, H.L.: Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci. USA 98, 13655–13659 (2001)

    Article  ADS  Google Scholar 

  51. Rosenfeld, S.S., Fordyce, P.M., Jeffersonand, G.M., King, P.H., Block, S.M.: Stepping and stretching: How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003)

    Article  Google Scholar 

  52. Schliwa, M.: Molecular Motors. Wiley-Vch, Weinheim (2003)

    Google Scholar 

  53. Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)

    Article  ADS  Google Scholar 

  54. Snyder, G.E., Sakamoto, T., Hammer, J.A., Sellers, J.R., Selvin, P.R.: Nanometer localization of single green fluorescent proteins: Evidence that Myosin V walks hand-over-hand via telemark configuration. Biophys. J. 87, 1776–1783 (2004)

    Article  ADS  Google Scholar 

  55. Sperry, A.O.: Molecular Motors: Methods and Protocols. Methods in Molecular Biology, vol. 392. Humana Press, Totowa (2007)

    Google Scholar 

  56. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  Google Scholar 

  57. Thorn, K.S., Ubersax, J.A., Vale, R.D.: Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000)

    Article  Google Scholar 

  58. Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y., Higuchi, H.: Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 103, 5741–5745 (2006)

    Article  ADS  Google Scholar 

  59. Toprak, E., Yildiz, A., Hoffman, M.T., Rosenfeld, S.S., Selvin, P.R.: Why kinesin is so processive. Proc. Natl. Acad. Sci. USA 106, 12717–12722 (2009)

    Article  ADS  Google Scholar 

  60. Tsygankov, D., Fisher, M.E.: Mechanoenzymes under superstall and large assisting loads reveal structural features. Proc. Natl. Acad. Sci. USA 104, 19321–19326 (2007)

    Article  ADS  Google Scholar 

  61. Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Article  Google Scholar 

  62. Vale, R.D.: Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol. 163, 445–450 (2003)

    Article  Google Scholar 

  63. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 2nd edn. Elsevier, Amsterdam (1997) Chap. XII

    Google Scholar 

  64. Veigel, C., Molloy, J.E., Schmitz, S., Kendrick-Jones, J.: Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5, 980–986 (2003)

    Article  Google Scholar 

  65. Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R.: Myosin-V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2016–2065 (2003)

    Article  Google Scholar 

  66. Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L.Q., Selvin, P.R., Sweeney, H.L.: Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37223–37226 (2004)

    Article  Google Scholar 

  67. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  Google Scholar 

  68. Yildiz, A., Tomishige, M., Gennerich, A., Vale, R.D.: Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008)

    Article  Google Scholar 

  69. Zhang, Y.: Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments. Phys. Lett. A 373, 2629–2633 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Fisher, M.E. Measuring the Limping of Processive Motor Proteins. J Stat Phys 142, 1218–1251 (2011). https://doi.org/10.1007/s10955-011-0118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0118-x

Keywords

Navigation