Skip to main content

Advertisement

Log in

Circulating Levels of the Shed Scavenger Receptor sCD163 and Association with Outcome of Critically Ill Patients

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

CD163, a scavenger receptor for haptoglobin-hemoglobin complexes, is almost exclusively expressed by monocytes and macrophages and is shedded (as sCD163) by inflammatory stimuli. Thus, high serum levels of sCD163 predicted mortality in certain inflammatory diseases. We investigated baseline levels, time course of sCD163 levels and CD163 gene expression in relation to mortality and clinical complications in a large heterogeneous cohort of critically ill patients.

Methods

In this pre-planned secondary analysis of two randomized clinical studies, critically ill patients (n = 1657) were randomized to “conventional” (insulin administered only for blood glucose levels above 215 mg/dL) or “intensive” insulin therapy (glycemia maintained at 80–110 mg/dL) and compared with healthy controls (n = 112).

Results

Upon admission, critically ill patients had 1.6-fold higher sCD163 levels than controls (P < 0.0001). Long-stay patients (ICU stay >5 days), non-survivors and patients who developed liver dysfunction or kidney injury had higher baseline sCD163 levels. In multivariable analyses, elevated baseline sCD163 levels were independently associated with ICU mortality, liver dysfunction, and time to discharge from ICU and hospital. sCD163 further increased during ICU stay in patients who developed organ dysfunction and in non-survivors. Avoiding hyperglycemia with insulin slightly reduced circulating sCD163 levels. Hepatic CD163 gene expression in patients was higher than in controls (P = 0.002) and correlated positively with sCD163 levels (P = 0.345, P < 0.0001).

Conclusions

This study hallmarks the association of elevated sCD163 with organ dysfunction and adverse outcome of critical illness and may point to the liver as a potential source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADAM17:

a disintegrin and metalloprotease domain 17

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

AUC:

area under the curve

BMI:

body mass index

CI:

confidence interval

CIT:

conventional insulin therapy

CRP:

C-reactive protein

HPRT:

hypoxanthine-guanine phosphoribosyltransferase

ICU:

intensive care unit

IIT:

intensive insulin therapy

IQR:

interquartile range

LDH:

lactate dehydrogenase

LPS:

lipopolysaccharide

PT:

prothrombin time

ROC:

receiver operating characteristic curve

SIRS:

systemic inflammatory response syndrome

SD:

standard deviation

TACE:

TNF-α converting enzyme

TLR:

Toll-like receptor

TNF-α:

tumor-necrosis factor α

References

  1. Maniecki MB, Møller HJ, Moestrup SK, Møller BK. CD163 positive subsets of blood dendritic cells: the scavenging macrophage receptors CD163 and CD91 are coexpressed on human dendritic cells and monocytes. Immunobiology. 2006;211:407–17.

    Article  PubMed  CAS  Google Scholar 

  2. Ritter M, Buechler C, Langmann T, Orso E, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J Leukoc Biol. 2000;67:97–103.

    PubMed  Google Scholar 

  3. Fabriek B, Dijkstra C, Van den Berg T. The macrophage scavenger receptor CD163. Immunobiology. 2005;210:153–60.

    Article  PubMed  CAS  Google Scholar 

  4. Schaer DJ, Schaer CA, Schoedon G, Imhof A, Kurrer MO. Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis. Eur J Haematol. 2006;77:432–6.

    Article  PubMed  CAS  Google Scholar 

  5. Sulahian TH, Pioli PA, Wardwell K, Guyre PM. Cross-linking of FCgammaR triggers shedding of the hemoglobin-haptoglobin scavenger receptor CD163. J Leukoc Biol. 2004;76:271–7.

    Article  PubMed  CAS  Google Scholar 

  6. Timmermann M, Hogger P. Oxidative stress and 8-iso-prostaglandin F(2alpha) induce ectodomain shedding of CD163 and release of tumor necrosis factor-alpha from human monocytes. Free Radic Biol Med. 2005;39:98–107.

    Article  PubMed  CAS  Google Scholar 

  7. Van Gorp H, Delputte P, Nauwynck H. Scavenger receptor CD163, a jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol. 2010;47:1650–60.

    Article  PubMed  Google Scholar 

  8. Møller HJ, Nielsen MJ, Maniecki MB, Madsen M, Moestrup SK. Soluble macrophage-derived CD163: a homogenous ectodomain protein with dissociable haptoglobin-hemoglobin binding. Immunobiology. 2010;215:406–12.

    Article  PubMed  Google Scholar 

  9. Schaer DJ, Schleiffenbaum B, Kurrer M, Imhof A, Bächli E, Fehr J, Møller HJ, Moestrup SK, Schaffner A. Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage specific marker in the reactive hemophagocytic syndrome. Eur J Haematol. 2005;74:6–10.

    Article  PubMed  CAS  Google Scholar 

  10. Hiraoka A, Horiike N, Akbar SM, Michitaka K, Matsuyama T, Onji M. Soluble CD163 in patients with liver diseases: very high levels of soluble CD163 in patients with fulminant hepatic failure. J Gastroenterol. 2005;40:52–6.

    Article  PubMed  CAS  Google Scholar 

  11. Holland-Fischer P, Grønbæk H, Sandahl TD, Moestrup SK, Riggio O, Ridola L, Aagaard NK, Møller HJ, Vilstrup H. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS. Gut. 2011;60:1389–93.

    Article  PubMed  CAS  Google Scholar 

  12. Møller HJ, Peterslund NA, Graversen JH, Moestrup SK. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood. 2002;99:378–80.

    Article  PubMed  Google Scholar 

  13. Weiss M, Schneider EM. Soluble CD163: an age-dependent, anti-inflammatory biomarker predicting outcome in sepsis. Crit Care Med. 2006;34:2682–83.

    Article  PubMed  Google Scholar 

  14. Møller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, Pedersen SS, Attermann J, Nexø E, Kronborg G. Macrophage serum markers in pneumococcal bacteremia: prediction of survival by soluble CD163. Crit Care Med. 2006;34:2561–6.

    Article  PubMed  Google Scholar 

  15. Bleesing J, Prada A, Siegel DM, Villanueva J, Olson J, Ilowite NT, Brunner HI, Griffin T, Graham TB, Sherry DD, Passo MH, Ramanan AV, Filipovich A, Grom AA. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:3877–8.

    Article  Google Scholar 

  16. Baeten D, Demetter P, Cuvelier CA, Kruithof E, Van Damme N, De Vos M, Veys EM, De Keyser F. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol. 2002;196:343–50.

    Article  PubMed  CAS  Google Scholar 

  17. Aristoteli LP, Møller HJ, Bailey B, Moestrup SK, Kritharides L. The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis. Atherosclerosis. 2006;184:342–7.

    Article  PubMed  CAS  Google Scholar 

  18. Fabriek BO, Møller HJ, Vloet RP, van Winsen LM, Hanemaaijer R, Teunissen CE, Uitdehaag BM, van den Berg TK, Dijkstra CD. Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis. J Neuroimmunol. 2007;187:179–86.

    Article  PubMed  CAS  Google Scholar 

  19. Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J, Lejbkowicz F, Enav B, Shehadeh N, Kanter Y, Lache O, Cohen O, Levy NS, Levy AP. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res. 2003;92:1193–200.

    Article  PubMed  CAS  Google Scholar 

  20. Philippidis P, Athanasiou T, Nadra I, Ashrafian H, Haskard DO, Landis RC, Taylor KM. Anti-inflammatory haemoglobin scavenging monocytes are induced following coronary artery bypass surgery. Eur J Cardiothorac surg. 2010;37:1360–6.

    Article  PubMed  Google Scholar 

  21. Møller HJ. Soluble CD163. Scand Clin J Lab Invest. 2012;72:1–13.

    Article  Google Scholar 

  22. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  23. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–61.

    Article  PubMed  Google Scholar 

  24. Hansen TK, Thiel S, Wouters PJ, Christiansen JS, Van den Berghe G. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab. 2003;88:1082–8.

    Article  PubMed  CAS  Google Scholar 

  25. Hiraoka A, Horiike N, Akbar SM, Michitaka K, Matsuyama T, Onji M. Expression of CD163 in the liver of patients with viral hepatitis. Pathol Res Pract. 2005;201:379–84.

    Article  PubMed  CAS  Google Scholar 

  26. Møller H, Hald K, Moestrup S. Characterization of an enzyme-linked immunosorbent assay for soluble CD163. Scand J Clin Lab Invest. 2002;62:293–9.

    Article  PubMed  Google Scholar 

  27. Møller HJ. Biological variation of soluble CD163. Scand J Clin Lab Invest. 2003;63:15–21.

    Article  PubMed  Google Scholar 

  28. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.

    Article  PubMed  CAS  Google Scholar 

  29. Pepys M, Hirschfield G. C-reactive protein: a critical update. J Clin Invest. 2003;111:1805–12.

    PubMed  CAS  Google Scholar 

  30. Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Mélot C, Vincent JL. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.

    Article  PubMed  CAS  Google Scholar 

  31. Wang F, Pan W, Pan S, Wang S, Ge Q, Ge J. Usefulness of N-terminal pro-brain natriuretic peptide and C-reactive protein to predict ICU mortality in unselected medical ICU patients: a prospective, observational study. Crit Care. 2011;15(1):R42.

    Article  PubMed  Google Scholar 

  32. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  PubMed  CAS  Google Scholar 

  33. Mesotten D, Wauters J, Van den Berghe G, Wouters PJ, Milants I, Wilmer A. The effect of strict blood glucose control on bilirary sludge and cholestasis in critically ill patients. J Clin Endocrinol Metab. 2009;94:2345–52.

    Article  PubMed  CAS  Google Scholar 

  34. Gaïni S, Pedersen SS, Koldkaer OG, Pedersen C, Moestrup SK, Møller HJ. New immunological serum markers in bacteraemia: anti-inflammatory soluble CD163, but not proinflammatory high mobility group-box 1 protein, is related to prognosis. Clin Exp Immunol. 2008;151:423–31.

    Article  PubMed  Google Scholar 

  35. Møller HJ, Grønbaek H, Schiødt FV, Holland-Fischer P, Schilsky M, Munoz S, Hassanein T, Lee WM. U.S Acute Liver Failure Study Group. Soluble CD163 from activated macrophages predicts mortality in acute liver failure. J Hepatol. 2007;47:671–6.

    Article  PubMed  Google Scholar 

  36. Possamai LA, Antoniades CG, Anstee QM, Quaglia A, Vergani D, Thursz M, Wendon J. Role of monocytes and macrophages in experimental and human acute liver failure. World J Gastroenterol. 2010;16:1811–9.

    Article  PubMed  CAS  Google Scholar 

  37. Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology. 2000;32:734–9.

    Article  PubMed  CAS  Google Scholar 

  38. Etzerodt A, Maniecki MB, Møller K, Møller HJ, Moestrup SK. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J Leukoc Biol. 2010;88:1201–5.

    Article  PubMed  CAS  Google Scholar 

  39. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA, Givan AL, Wallace PK, Yeager MP, Guyre PM. Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol. 2002;72:711–7.

    PubMed  CAS  Google Scholar 

  40. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293:1653–62.

    Article  PubMed  CAS  Google Scholar 

  41. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24:449–55.

    Article  PubMed  CAS  Google Scholar 

  42. Strauss R, Neureiter D, Westenburger B, Wehler M, Kirchner T, Hahn EG. Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients - a postmortem clinicopathologic analysis. Crit Care Med. 2004;32:1316–21.

    Article  PubMed  Google Scholar 

  43. Knudsen TB, Larsen K, Kristiansen TB, Møller HJ, Tvede M, Eugen-Olsen J, Kronborg G. Diagnostic value of soluble CD163 serum levels in patients suspected of meningitis: comparison with CRP and procalcitonin. Scand J Infect Dis. 2007;39:542–53.

    Article  PubMed  CAS  Google Scholar 

  44. Gaïni S, Koldkjaer O, Pedersen SS, Pedersen C, Moestrup SK, Møller HJ. Soluble haemoglobin scavenger receptor (sCD163) in patients with suspected community-acquired infections. APMIS. 2006;114:103–11.

    Article  PubMed  Google Scholar 

  45. Himmelfarb J. Linking oxidative stress and inflammation in kidney disease: which is the chicken and which is the egg? Sem Dial. 2004;17:449–54.

    Article  Google Scholar 

  46. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119:2868–78.

    Article  PubMed  CAS  Google Scholar 

  47. Faubel S. Acute kidney injury and multiple organ dysfunction syndrome. Minerva Urol Nefrol. 2009;61:171–88.

    PubMed  CAS  Google Scholar 

  48. Axelsson J, Møller HJ, Witasp A, Qureshi AR, Carrero JJ, Heimbürger O, Bárány P, Alvestrand A, Lindholm B, Moestrup SK, Stenvinkel P. Changes in fat mass correlate with changes in soluble sCD163, a marker of mature macrophages, in patients with CKD. Am J Kidney Dis. 2006;48:916–25.

    Article  PubMed  CAS  Google Scholar 

  49. Su L, Feng L, Jiang Z, Li M, Xiao K, Yan P, Jia Y, Feng D, Liu C, Xie L. Diagnostic value of urine sCD163 levels for sepsis and relevant acute kidney injury: a prospective study. BMC Nephrol. 2012;13:123.

    Article  PubMed  CAS  Google Scholar 

  50. Losser M-R, Damoisel C, Payen D. Bench-to-bedside review: glucose and stress conditions in the intensive care unit. Crit Care. 2010;14:231–42.

    Article  PubMed  Google Scholar 

  51. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  52. Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, van den Heuvel I, Mesotten D, Casaer MP, Meyfroidt G, Ingels C, Muller J, Van Cromphaut S, Schetz M, Van den Berghe G. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kirsten Bank Petersen for excellent technical assistance.

CI received a Doctoral Fellowship of the Clinical Research Fund of the University Hospitals Leuven. GVdB by the University of Leuven, receives long-term structural research financing via the Methusalem program, funded by the Flemish Government.

Competing Interests

HM and Aarhus University have received royalties from IQ-products, the Netherlands.

The other authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greet Van den Berghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingels, C., Møller, H.J., Hansen, T.K. et al. Circulating Levels of the Shed Scavenger Receptor sCD163 and Association with Outcome of Critically Ill Patients. J Clin Immunol 33, 619–629 (2013). https://doi.org/10.1007/s10875-012-9830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9830-9

Keywords

Navigation