Skip to main content

Advertisement

Log in

Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aithal GP, Day CP (2007) Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin Liver Dis 11(3):563–575, vi–vii

    Article  Google Scholar 

  • Aleo MD, Doshna CM, Navetta KA (2005) Ciglitazone-induced lenticular opacities in rats: in vivo and whole lens explant culture evaluation. J Pharmacol Exp Ther 312(3):1027–1033

    Article  CAS  Google Scholar 

  • Bachelard HS, Clark AG, Thompson MF (1971) Cerebral-cortex hexokinase. Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis. Biochem J 123(5):707–715

    CAS  Google Scholar 

  • Beeson CC, Beeson GC, Schnellmann RG (2010) A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 404(1):75–81

    Article  CAS  Google Scholar 

  • Berson A, Schmets L, Fisch C, Fau D, Wolf C, Fromenty B et al (1994) Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen. J Pharmacol Exp Ther 270(1):167–176

    CAS  Google Scholar 

  • Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metabol 7(7):715–727

    Article  CAS  Google Scholar 

  • Casanovas AM, Malmary Nebot MF, Courriere P, Oustrin J (1983) Inhibition of cytochrome oxidase activity by local anaesthetics. Biochem Pharmacol 32(18):2715–2719

    Article  CAS  Google Scholar 

  • Clark LC Jr (1960) Intravascular polarographic and potentiometric electrodes for the study of circulation. Trans Am Soc Artif Intern Organs 6:348–354

    Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century. National Academies Press, Washington, DC

    Google Scholar 

  • Cunarro J, Weiner MW (1975) Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria. Biochim Biophys Acta 387(2):234–240

    Article  CAS  Google Scholar 

  • Duthie A, Nicholls A, Freeth M, Moorhead P, Triger D (1982) Fatal cholestatic jaundice in elderly patients taking benoxaprofen. Br Med J (Clin Res Ed) 285(6334):62

    Article  CAS  Google Scholar 

  • Dykens JA, Will Y (2007) The significance of mitochondrial toxicity testing in drug development. Drug Discov Today 12(17–18):777–785

    Article  CAS  Google Scholar 

  • Dykens JA, Marroquin LD, Will Y (2007) Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn 7(2):161–175

    Article  CAS  Google Scholar 

  • Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y (2008a) Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 233(2):203–210

    Article  CAS  Google Scholar 

  • Dykens JA, Jamieson JD, Marroquin LD, Nadanaciva S, Xu JJ, Dunn MC et al (2008b) In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci 103(2):335–345

    Article  CAS  Google Scholar 

  • Fau D, Eugene D, Berson A, Letteron P, Fromenty B, Fisch C et al (1994) Toxicity of the antiandrogen flutamide in isolated rat hepatocytes. J Pharmacol Exp Ther 269(3):954–962

    CAS  Google Scholar 

  • Haasio K, Koponen A, Penttila KE, Nissinen E (2002) Effects of entacapone and tolcapone on mitochondrial membrane potential. Eur J Pharmacol 453(1):21–26

    Article  CAS  Google Scholar 

  • Herst PM, Berridge MV (2007) Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim Biophys Acta 1767(2):170–177

    Article  CAS  Google Scholar 

  • Hill BG, Dranka BP, Zou L, Chatham JC, Darley-Usmar VM (2009) Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem J 424(1):99–107

    Article  CAS  Google Scholar 

  • Horgan DJ, Ohno H, Singer TP (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XV. Interactions of piericidin with the mitochondrial respiratory chain. J Biol Chem 243(22):5967–5976

    CAS  Google Scholar 

  • Hynes J, Marroquin LD, Ogurtsov VI, Christiansen KN, Stevens GJ, Papkovsky DB et al (2006) Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol Sci 92(1):186–200

    Article  CAS  Google Scholar 

  • Isley WL (2003) Hepatotoxicity of thiazolidinediones. Expet Opin Drug Saf 2(6):581–586

    Article  CAS  Google Scholar 

  • Kato S, Ivester CT, Cooper GT, Zile MR, McDermott PJ (1995) Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am J Physiol 268(6 Pt 2):H2495–H2504

    CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  CAS  Google Scholar 

  • Kramer JA, Sagartz JE, Morris DL (2007) The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 6(8):636–649

    Article  CAS  Google Scholar 

  • Masubuchi Y, Kano S, Horie T (2006) Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones. Toxicology 222(3):233–239

    Article  CAS  Google Scholar 

  • Maurer I, Moller HJ (1997) Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 174(1–2):255–259

    Article  CAS  Google Scholar 

  • McDougall P, Markham A, Cameron I, Sweetman AJ (1983) The mechanism of inhibition of mitochondrial oxidative phosphorylation by the nonsteroidal anti-inflammatory agent diflunisal. Biochem Pharmacol 32(17):2595–2598

    Article  CAS  Google Scholar 

  • Modica-Napolitano JS, Lagace CJ, Brennan WA, Aprille JR (2003) Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro. Arch Pharm Res 26(11):951–959

    Article  CAS  Google Scholar 

  • Nadanaciva S, Dykens JA, Bernal A, Capaldi RA, Will Y (2007) Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol 223(3):277–287

    Article  CAS  Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471

    Article  CAS  Google Scholar 

  • Nissen SE, Wolski K, Topol EJ (2005) Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 294(20):2581–2586

    Article  CAS  Google Scholar 

  • Nissinen E, Kaheinen P, Penttila KE, Kaivola J, Linden IB (1997) Entacapone, a novel catechol-O-methyltransferase inhibitor for Parkinson’s disease, does not impair mitochondrial energy production. Eur J Pharmacol 340(2–3):287–294

    Article  CAS  Google Scholar 

  • O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80(9):580–604

    Article  Google Scholar 

  • Perez-Ortiz JM, Tranque P, Vaquero CF, Domingo B, Molina F, Calvo S et al (2004) Glitazones differentially regulate primary astrocyte and glioma cell survival. Involvement of reactive oxygen species and peroxisome proliferator-activated receptor-gamma. J Biol Chem 279(10):8976–8985

    Article  CAS  Google Scholar 

  • Schagger H, Brandt U, Gencic S, von Jagow G (1995) Ubiquinol-cytochrome-c reductase from human and bovine mitochondria. Methods Enzymol 260:82–96

    Article  CAS  Google Scholar 

  • Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC et al (2002) Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 277(1):618–622

    Article  CAS  Google Scholar 

  • Somasundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB et al (1997) Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID induced injury to the rat intestine. Gut 41(3):344–353

    Article  CAS  Google Scholar 

  • Somasundaram S, Sigthorsson G, Simpson RJ, Watts J, Jacob M, Tavares IA et al (2000) Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment Pharmacol Ther 14(5):639–650

    Article  CAS  Google Scholar 

  • Sridharan V, Guichard J, Li CY, Muise-Helmericks R, Beeson CC, Wright GL (2008) O(2)-sensing signal cascade: clamping of O(2) respiration, reduced ATP utilization, and inducible fumarate respiration. Am J Physiol Cell Physiol 295(1):C29–C37

    Article  CAS  Google Scholar 

  • Tirmenstein MA, Hu CX, Gales TL, Maleeff BE, Narayanan PK, Kurali E et al (2002) Effects of troglitazone on HepG2 viability and mitochondrial function. Toxicol Sci 69(1):131–138

    Article  CAS  Google Scholar 

  • Walker JE, Collinson IR, Van Raaij MJ, Runswick MJ (1995) Structural analysis of ATP synthase from bovine heart mitochondria. Methods Enzymol 260:163–190

    Article  CAS  Google Scholar 

  • Wallace KB (2008) Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 29(7):361–366

    Article  CAS  Google Scholar 

  • Wojtczak L, & Zablocki K (2008) Drug-induced mitochondrial dysfunction. In: Dykens JA & Will Y (eds) (pp 3–35). John Wiley & Sons: Hoboken, NJ

  • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–C136

    Article  CAS  Google Scholar 

  • Zhao X, Leon IR, Bak S, Mogensen M, Wrzesinski K, Hojlund K et al (2011) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 10(1):M110 000299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sashi Nadanaciva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadanaciva, S., Rana, P., Beeson, G.C. et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr 44, 421–437 (2012). https://doi.org/10.1007/s10863-012-9446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9446-z

Keywords

Navigation