Skip to main content

Advertisement

Log in

Neural-specific expression of miR-344-3p during mouse embryonic development

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

MicroRNAs are small noncoding RNAs involved in various biological processes. We characterized the expression of miR-344-3p during mouse embryonic development. At E9.5–E10.5 and E15.5, in situ hybridization detected strong miR-344-3p signal in the central nervous system, including the cerebral cortex, hindbrain, cerebellum, thalamus, hindbrain, medulla oblongata, spinal cord, and dorsal root ganglia. Further, qRT-PCR analysis identified miR-344-3p expression at E15.5, with expression stably maintained in the brain from E12.5 to E18.5 before decreasing to relatively low levels postnatally. We also analyzed miR-344-3p expression using immunofluorescence in situ hybridization at E18.5 and within the adult brain. miR-344-3p signal was mainly detected in cortical regions surrounding the ventricular system, choroid plexus, glomerular layer of the olfactory bulb, and granular cell layer of the cerebellar cortex. Altogether, our results indicate miR-344-3p may play an important role in morphogenesis, nervous system development in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21(4):511–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA (2009) Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod 81(1):165–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103(7):2422–2427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135(23):3911–3921

    Article  Google Scholar 

  • Dill H, Linder B, Fehr A, Fischer U (2012) Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev 26(1):25–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brustle O (2012) Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE 7(1):e29597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J, Liu QG (2011) The role of miR-26 in tumors and normal tissues (Review). Oncol Lett 2(6):1019–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ge W, Chen YW, Weng R, Lim SF, Buescher M, Zhang R, Cohen SM (2012) Overlapping functions of microRNAs in control of apoptosis during Drosophila embryogenesis. Cell Death Differ 19(5):839–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227(1):172–179. doi:10.1016/j.expneurol.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu E, Zheng Y, Yang L, Sun T (2011) Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development. PLoS ONE 6(10):e26000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17(8):991–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CC, Liu LZ, Addison JB, Wonderlin WF, Ivanov AV, Ruppert JM (2011) A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context. Mol Cell Biol 31(12):2513–2527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakaya HI, Amaral PP, Louro R, Lopes A, Fachel AA, Moreira YB, El-Jundi TA, da Silva AM, Reis EM, Verjovski-Almeida S (2007) Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol 8(3):R43

    Article  PubMed Central  PubMed  Google Scholar 

  • Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi L, Hongjuan H, Ning G, Zhengbin H, Yanjiang X, Tiebo Z, Zhijun H, Qiong W (2013) miR-370 is stage-specifically expressed during mouse embryonic development and regulates Dnmt3a. FEBS Lett 587(6):775–781

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320

    Article  PubMed Central  PubMed  Google Scholar 

  • Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684. doi:10.1007/s11011-009-9169-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Royo H, Cavaille J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100(3):149–166

    Article  CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    Article  PubMed Central  PubMed  Google Scholar 

  • Song R, Ro S, Yan W (2010) In situ hybridization detection of microRNAs. Methods Mol Biol 629:287–294

    PubMed Central  PubMed  Google Scholar 

  • Stappert L, Borghese L, Roese-Koerner B, Weinhold S, Koch P, Terstegge S, Uhrberg M, Wernet P, Brüstle O (2013) MicroRNA-based promotion of human neuronal differentiation and subtype specification. PLoS ONE 8(3):e59011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stone N, Pangilinan F, Molloy AM, Shane B, Scott JM, Ueland PM, Mills JL, Kirke PN, Sethupathy P, Brody LC (2011) Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PLoS ONE 6(7):e21851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20(3):271–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tal TL, Franzosa JA, Tilton SC, Philbrick KA, Iwaniec UT, Turner RT, Waters KM, Tanguay RL (2012) MicroRNAs control neurobehavioral development and function in zebrafish. FASEB J 26(4):1452–1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129(7):1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Tripurani SK, Lee KB, Wee G, Smith GW, Yao J (2011) MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol 11:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei C, Thatcher EJ, Olena AF, Cha DJ, Perdigoto AL, Marshall AF, Carter BD, Broadie K, Patton JG (2013) miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS ONE 8(2):e57080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B (2012) Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148(4):816–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan G, Zhang L, Fang T, Zhang Q, Wu S, Jiang Y, Sun H, Hu Y (2012) MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 586(19):3263–3270

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, Yan G, Hu Y (2013) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE 8(3):e59667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF. 2010027), the National Natural Science Foundation of China (Nos. 31100934 and 31171383), and the Special Financial Grant from the China Postdoctoral Science Foundation (2013T60353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., He, H., Zeng, T. et al. Neural-specific expression of miR-344-3p during mouse embryonic development. J Mol Hist 45, 363–372 (2014). https://doi.org/10.1007/s10735-013-9555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9555-y

Keywords

Navigation