Skip to main content
Log in

Karyotype analysis of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) reveals a large X chromosome with rRNA and histone gene families

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The Russsian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a worldwide pest of cereals. Despite its economic importance, little is known about its genome. Here we investigated physical genomic features in RWA by karyotype analysis using differential staining with AgNO3, CMA3, and DAPI, by chromosomal localization of ribosomal DNA (rDNA), H3 and H4 histone genes, and the “arthropod” telomeric sequence (TTAGG) n using fluorescence in situ hybridization (FISH), and by measuring the RWA genome size using flow cytometry. The female karyotype, 2n = 10, is composed of four autosome pairs and a pair of X chromosomes, whereas the male karyotype, 2n = 9, has a single X. The X chromosome is the largest element in the karyotype. All three molecular markers used, i.e., 18S rRNA and both H3 and H4 probes are co-localized at one end of the X chromosome. The FISH probes revealed that the AgNO3-positive bridge between two prometaphase X chromosomes of females, which is believed to be responsible for the elimination of one X chromosome in aphid oocytes determined to undergo male development, contains clusters of both histone genes, in addition to an rDNA cluster. Interestingly, RWA lacks the (TTAGG) n telomeric sequence in its genome, in contrast to several previously investigated aphid species. Additionally, we compared female and male genome sizes. The female genome size is 2C = 0.86 pg, whereas the male genome size is 2C = 0.70 pg. The difference between the DNA content in the two genders suggests that the RWA X chromosome occupies about 35% of the female haploid genome (1C = 0.43 pg), which makes it one of the largest sex chromosomes in the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bizzaro D, Barbolini E, Mandrioli M, Mazzoni E, Manicardi GC (1999) Cytogenetic characterization of the holocentric chromosomes in the aphids Myzus varians and Myzus cerasi. Caryologia 52:81–85

    Google Scholar 

  • Bizzaro D, Mandrioli M, Zanotti M, Giusti M, Manicardi GC (2000) Chromosome analysis and molecular characterization of highly repeated DNAs in the aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genetica 108:197–202

    Article  PubMed  CAS  Google Scholar 

  • Blackman RL (1980) Chromosome numbers in the Aphididae and their taxonomic significance. Syst Entomol 5:7–25

    Article  Google Scholar 

  • Blackman RL (1987) Reproduction, cytogenetics and development. In: Minsk AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 163–195

    Google Scholar 

  • Blackman RL (1988) Stability of a multiple X chromosome system and associated B chromosomes in birch aphids (Euceraphis spp.; Homoptera: Aphididae). Chromosoma 96:318–324

    Google Scholar 

  • Blackman RL, Hales DF (1986) Behavior of the X-chromosomes during growth and maturation of parthenogenetic eggs of Amphorophora tuberculata (Homoptera, Aphididae), in relation to sex determination. Chromosoma 94:59–64

    Article  Google Scholar 

  • Blackman RL, Spence JM (1996) Ribosomal DNA is frequently concentrated on only one X chromosome in permanently apomictic aphids, but this does not inhibit male determination. Chromosome Res 4:314–320

    Article  PubMed  CAS  Google Scholar 

  • Blackman RL, Takada H (1976) Naturally occurring chromosomal translocation in Myzus persicae (Sulzer). J Entomol Ser A 50:147–156

    Article  Google Scholar 

  • Blackman RL, Brown PA, Ramírez CC, Niemeyer HM (2003) Karyotype variation in the South American aphid genus Neuquenaphis (Hemiptera, Aphididae, Neuquenaphidinae). Hereditas 138:6–10

    Article  PubMed  Google Scholar 

  • Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Austral J Zool 46:419–437

    Article  Google Scholar 

  • Criniti A, Simonazzi G, Cassanelli S, Ferrari M, Bizzaro D, Manicardi GC (2009) Distribution of heterochromatin and rDNA on the holocentric chromosomes of the aphids Dysaphis plantaginea and Melanaphis pyraria (Hemiptera: Aphididae). Eur J Entomol 106:153–157

    CAS  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  Google Scholar 

  • Fenton B, Birch ANE, Malloch G, Woodford JAT, Gonzalez C (1994) Molecular analysis of ribosomal DNA from the aphid Amphorophora idaei and an associated fungal organism. Insect Mol Biol 3:183–189

    Article  PubMed  CAS  Google Scholar 

  • Finston TL, Hebert PDN, Foottit RB (1995) Genome size variation in aphids. Insect Biochem Mol Biol 25:189–196

    Article  CAS  Google Scholar 

  • Frydrychová R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115:179–187

    Article  PubMed  Google Scholar 

  • Frydrychová R, Grossmann P, Trubač P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47:163–178

    Article  PubMed  Google Scholar 

  • Fuková I, Nguyen P, Marec F (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48:1083–1092

    Article  PubMed  Google Scholar 

  • Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238

    Article  PubMed  CAS  Google Scholar 

  • Gut J (1976) Chromosome numbers of parthenogenetic females of fifty-five species of Aphididae (Homoptera) new to cytology. Genetica 46:279–285

    Article  Google Scholar 

  • Halbert SE, Stoetzel MB (1998) Historical overview of the Russian wheat aphid (Homoptera: Aphididae). In: Quisenberry SS, Peairs FB (eds) Response model for an introduced pest-the Russian wheat aphid, pp 12–30. Proceedings. Thomas Say Publications in Entomology. Entomological Society of America. Lanham, MD, pp 442

  • Hales DF (1989) The chromosome of Schoutedenia lutea (Homoptera, Aphididae, Greenideinae), with an account of meiosis in the male. Chromosoma 98:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova VG, Gandrabur SI (1991) The nucleolar organizing regions in the aphid chromosomes. Tsitologiya 33:41–47

    Google Scholar 

  • Kuznetsova VG, Shaposhnikov GK (1973) The chromosome number of the aphids (Homoptera: Aphidinea) of the world fauna. Entomol Rev 52:78–96

    Google Scholar 

  • Lockwood APM (1961) “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol 2:241–289

    Article  PubMed  CAS  Google Scholar 

  • Mandrioli M, Bizzaro D, Giusti M, Manicardi GC, Bianchi U (1999a) The role of rDNA genes in X chromosome association in the aphid Acyrthosiphon pisum. Genome 42:381–386

    Article  PubMed  CAS  Google Scholar 

  • Mandrioli M, Bizzaro D, Manicardi GC, Gionghi D, Bassoli L, Bianchi U (1999b) Cytogenetic and molecular characterization of a highly repeated DNA sequence in the peach potato aphid Myzus persicae. Chromosoma 108:436–442

    Article  PubMed  CAS  Google Scholar 

  • Manicardi GC, Bizzaro D, Mandrioli M, Bianchi U (1998) Silver staining as a new banding technique to identify aphid chromosomes. Chromosome Res 6:55–57

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Frydrychova RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. BioEssays 30:25–37

    Article  PubMed  CAS  Google Scholar 

  • McKee BD, Karpen GH (1990) Drosophila ribosomal-RNA genes function as an X-Y pairing site during male meiosis. Cell 61:61–72

    Article  PubMed  CAS  Google Scholar 

  • McKee BD, Habera L, Vrana JA (1992) Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics 132:529–544

    PubMed  CAS  Google Scholar 

  • Orlando E (1974) Sex determination in Megoura viciae Buckton (Homoptera Aphididae). Monit Zool Ital 8:61–70

    Google Scholar 

  • Pineau P, Henry M, Suspene R, Marchio A, Dettai A, Debruyne W, Petit T, Lecu A, Moisson P, Dejean A, Wain-Hobson S, Vartanian JP (2005) A universal primer set for PCR amplification of nuclear histone H4 genes from all animal species. Mol Biol Evol 22:582–588

    Article  PubMed  CAS  Google Scholar 

  • Roehrdanz R, Heilmann L, Senechal P, Sears S, Evenson P (2010) Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. Insect Mol Biol 19:463–471

    PubMed  CAS  Google Scholar 

  • Rosén M, Edström J (2000) DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol 9:341–347

    Article  PubMed  Google Scholar 

  • Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460

    Article  PubMed  CAS  Google Scholar 

  • Schaffner W, Gross K, Telford J, Birnstiel M (1976) Molecular analysis of histone gene cluster of Psammechinus miliaris. 2. Arrangenment of 5 histone-coding and spacer sequences. Cell 8:471–478

    Article  PubMed  CAS  Google Scholar 

  • Shufran KA, Kirkman LR, Puterka GJ (2007) Absence of mitochondrial DNA sequence variation in Russian wheat aphid (Hemiptera: Aphididae) Populations consistent with a single introduction into the United States. J Kansas Entomol Soc 80:319–326

    Article  Google Scholar 

  • Spence JM, Blackman RL, Testa JM, Ready PD (1998) A 169-base pair tandem repeat DNA marker for subtelomeric heterochromatin and chromosomal rearrangements in aphids of the Myzus persicae group. Chromosome Res 6:167–175

    Article  PubMed  CAS  Google Scholar 

  • Stephenson EC, Erba HP, Gall JG (1981) Characterization of a cloned histone gene-cluster of the newt Notophthalmus viridescens. Nucleic Acids Res 9:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Traut W (1976) Pachytene mapping in female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma 58:275–284

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Szczepanowski M, Vítková M, Opitz C, Marec F, Zrzavý J (2007) The telomere repeat motif of basal Metazoa. Chromosome Res 15:371–382

    PubMed  CAS  Google Scholar 

  • Turner PC, Woodland HR (1983) Histone gene number and organization in Xenopus–Xenopus borealis has a homogeneous major cluster. Nucleic Acids Res 11:971–986

    Article  PubMed  CAS  Google Scholar 

  • Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG) n . Chromosome Res 13:145–156

    Article  PubMed  Google Scholar 

  • Walter MF, Bozorgnia L, Maheshwari A, Biessmann H (2001) The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae. Insect Mol Biol 10:105–110

    Article  PubMed  CAS  Google Scholar 

  • Whiting MF (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool Scr 31:93–104

    Article  Google Scholar 

  • Zakian VA (1995) Telomeres—beginning to understand the end. Science 270:1601–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank František Marec (České Budějovice, Czech Republic) for critical reading of the manuscript, Walther Traut (Lübeck, Germany) for valuable comments, and Marian R. Goldsmith (Kingston, Rhode Island, USA) for correcting English. J. N. acknowledges support by grant 137/2010/P from the Grant Agency of the University of South Bohemia and M. V. by grant KJB501410901 from the Grant Agency of the Academy of Sciences of the Czech Republic. J. H. and P. S. were supported by grant 522/09/1940 from the Grant Agency of the Czech Republic and from Entomology Institute project Z50070508. P. K. was supported by project MSM 6007665801 from the Ministry of Education, Youth and Sports of the Czech Republic. Finally, we thank two anonymous reviewers, whose comments and suggestions helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Vítková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotná, J., Havelka, J., Starý, P. et al. Karyotype analysis of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) reveals a large X chromosome with rRNA and histone gene families. Genetica 139, 281–289 (2011). https://doi.org/10.1007/s10709-011-9546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9546-4

Keywords

Navigation