Skip to main content

Advertisement

Log in

Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Systemic inhibition of Dll4 has been shown to thoroughly reduce cancer metastasis. The exact cause of this effect and whether it is endothelial mediated remains to be clarified. Therefore, we proposed to analyze the impact of endothelial Dll4 loss-of-function on metastasis induction on three early steps of the metastatic process, regulation of epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC) frequency and circulating tumor cell (CTC) number. For this, Lewis Lung Carcinoma (LLC) cells were used to model mouse tumor metastasis in vivo, by subcutaneous transplantation into endothelial-specific Dll4 loss-of-function mice. We observed that endothelial-specific Dll4 loss-of-function is responsible for the tumor vascular regression that leads to the reduction of tumor burden. It induces an increase in tumoral blood vessel density, but the neovessels are poorly perfused, with increased leakage and reduced perivascular maturation. Unexpectedly, although hypoxia was increased in the tumor, the number and burden of macro-metastasis was significantly reduced. This is likely to be a consequence of the observed reduction in both EMT and CSC numbers caused by the endothelial-specific Dll4 loss-of-function. This multifactorial context may explain the concomitantly observed reduction of the circulating tumor cell count. Furthermore, our results suggest that endothelial Dll4/Notch-function mediates tumor hypoxia-driven increase of EMT. Therefore, it appears that endothelial Dll4 may constitute a promising target to prevent metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA Cancer J Clin 59:111–137. https://doi.org/10.3322/caac.20003

    Article  PubMed  Google Scholar 

  2. Abdollahi A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13:16–28. https://doi.org/10.1016/j.drup.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Geiger TR, Peeper DS (2009) Biochim et Biophys Acta Metastasis Mech 1796:293–308. https://doi.org/10.1016/j.bbcan.2009.07.006

    Article  CAS  Google Scholar 

  4. Ribatti D (2011) Antiangiogenic therapy accelerates tumor metastasis. Leuk Res 35:24–26. https://doi.org/10.1016/j.leukres.2010.07.038

    Article  PubMed  Google Scholar 

  5. Saranadasa M, Wang ES (2011) Vascular endothelial growth factor inhibition: conflicting roles in tumor growth. Cytokine 53:115–129. https://doi.org/10.1016/j.cyto.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  6. Duarte A, Hirashima M, Benedito R et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18:2474–2478. https://doi.org/10.1101/gad.1239004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benedito R, Duarte A (2005) Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. Gene Expr Patterns 5:750–755. https://doi.org/10.1016/j.modgep.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  8. Noguera-Troise I, Daly C, Papadopoulos NJ et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037. https://doi.org/10.1038/nature05355

    Article  CAS  PubMed  Google Scholar 

  9. Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087. https://doi.org/10.1038/nature05313

    Article  CAS  PubMed  Google Scholar 

  10. Scehnet JS, Jiang W, Kumar SR et al (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109:4753–4760. https://doi.org/10.1182/blood-2006-12-063933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamanda S, Ebihara S, Asada M et al (2009) Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade. Blood 113:3631–3639. https://doi.org/10.1182/blood-2008-07-170381

    Article  CAS  PubMed  Google Scholar 

  12. Liu SK, Bham SAS, Fokas E et al (2011) Delta-like ligand 4-notch blockade and tumor radiation response. J Natl Cancer Inst 103:1778–1798. https://doi.org/10.1093/jnci/djr419

    Article  CAS  PubMed  Google Scholar 

  13. Timmerman LA, Grego-Bessa J, Raya A et al (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115. https://doi.org/10.1101/gad.276304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sahlgren C, Gustafsson MV, Jin S et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci 105:6392–6397. https://doi.org/10.1073/pnas.0802047105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang MH, Wu KJ (2008) TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7:2090–2096. https://doi.org/10.4161/cc.7.14.6324

    Article  CAS  PubMed  Google Scholar 

  16. Leong KG, Niessen K, Kulic I et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204:2935–2948. https://doi.org/10.1084/jem.20071082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niessen K, Fu Y, Chang L et al (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182:315–325. https://doi.org/10.1083/jcb.200710067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Espinoza I, Pochampally R, Xing F et al (2013) Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 6:1249–1259. https://doi.org/10.2147/OTT.S36162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang QB, Ma X, Li HZ et al (2014) Endothelial Delta-like 4 (DLL4) promotes renal cell carcinoma hematogenous metastasis. Oncotarget 5:3066–3075. https://doi.org/10.18632/oncotarget.1827

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuramoto T, Goto H, Mitsuhashi A et al (2012) Dll4-Fc, an inhibitor of Dll4-notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-κB activity. Mol Cancer Ther 11:2578–2587. https://doi.org/10.1158/1535-7163.MCT-12-0640

    Article  CAS  PubMed  Google Scholar 

  21. Xu Z, Wang Z, Jia X et al (2016) MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett 372:118–127. https://doi.org/10.1016/j.canlet.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  22. Wieland E, Rodriguez-Vita J, Liebler SS et al (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31:355–367. https://doi.org/10.1016/j.ccell.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  23. Chiang SPH, Cabrera RM, Segall JE (2016) Tumor cell intravasation. Am J Physiol Cell Physiol 311:C1–C14. https://doi.org/10.1152/ajpcell.00238.2015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44:94–112. https://doi.org/10.1016/j.matbio.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  25. Yamamura T, Tsukikawa S, Yamada K, Yamaguchi S (2001) Morphologic analysis of microvessels in colorectal tumors with respect to the formation of liver metastases. J Surg Oncol 78:259–264. https://doi.org/10.1002/jso.1164

    Article  CAS  PubMed  Google Scholar 

  26. Tsuji T, Ibaragi S, Hu G (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139. https://doi.org/10.1158/0008-5472.CAN-09-1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuji T, Ibaragi S, Shima K et al (2008) Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell Local invasion but suppresses distant colony growth. Cancer Res 68:10377–10386. https://doi.org/10.1158/0008-5472.CAN-08-1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koch U, Fiorini E, Benedito R et al (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205:2515–2523. https://doi.org/10.1084/jem.20080829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pedrosa A-R, Trindade A, Carvalho C et al (2015) Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions. Oncotarget 6:24404–24423. https://doi.org/10.18632/oncotarget.4380

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bos PD, Nguyen DX, Massagué J (2010) Modeling metastasis in the mouse. Curr Opin Pharmacol 10:571–577. https://doi.org/10.1016/j.coph.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai KX, Tse LY, Leung C et al (2008) Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 14:939–949. https://doi.org/10.1158/1078-0432.CCR-07-1930

    Article  CAS  PubMed  Google Scholar 

  32. Djokovic D, Trindade A, Gigante J et al (2010) Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogenesis. BMC Cancer 10:641. https://doi.org/10.1186/1471-2407-10-641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rashidi B, Moossa AR, Hoffman RM (2013) Specific route mapping visualized with GFP of single-file streaming contralateral and systemic metastasis of Lewis lung carcinoma cells beginning within hours of orthotopic implantation [correction of implantion]. J Cell Biochem 114:1738–1743. https://doi.org/10.1002/jcb.24516

    Article  CAS  PubMed  Google Scholar 

  34. Gratton JP, Lin MI, Yu J et al (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4:31–39

    Article  CAS  PubMed  Google Scholar 

  35. Yu K-R, Yang S-R, Jung J-W et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30:876–887. https://doi.org/10.1002/stem.1052

    Article  CAS  PubMed  Google Scholar 

  36. Atkinson RL, Yang WT, Rosen DG et al (2013) Cancer stem cell markers are enriched in normal tissue adjacent to triple negative breast cancer and inversely correlated with DNA repair deficiency. Breast Cancer Res 15:R77. https://doi.org/10.1186/bcr3471

    Article  PubMed  PubMed Central  Google Scholar 

  37. Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129:523–536. https://doi.org/10.1016/j.cell.2007.02.045

    Article  CAS  PubMed  Google Scholar 

  38. Trindade A, Djokovic D, Gigante J et al (2012) Low-dosage inhibition of Dll4 signaling promotes wound healing by inducing functional neo- angiogenesis. PLoS ONE 7:e29863. https://doi.org/10.1371/journal.pone.0029863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ioannou M, Simos G, Koukoulis GK (2013) HIF-1alpha in lung carcinoma: histopathological evidence of hypoxia targets in patient biopsies. J Solid Tumors 3:35–43. https://doi.org/10.5430/jst.v3n2p35

    Article  Google Scholar 

  40. Janker F, Weder W, Jang J-H, Jungraithmayr W (2018) Preclinical, non-genetic models of lung adenocarcinoma: a comparative survey. Oncotarget 9:30527–30538. https://doi.org/10.18632/oncotarget.25668

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohnuki H, Jiang K, Wang D et al (2014) Tumor-infiltrating myeloid cells activate Dll4/Notch/TGF-β signaling to drive malignant progression. Cancer Res 74:2038–2049. https://doi.org/10.1158/0008-5472.CAN-13-3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pedrosa A-R, Trindade A, Fernandes A-C et al (2015) Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1. Arterioscler Thromb Vasc Biol 25:1134–1146. https://doi.org/10.1161/atvbaha.114.304741

    Article  Google Scholar 

  43. Trindade A, Djokovic D, Gigante J et al (2017) Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo. BMC Cancer 17:189. https://doi.org/10.1186/s12885-017-3171-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Badenes M, Trindade A, Pissarra H et al (2017) Delta-like 4/Notch signaling promotes Apc Min/+ tumor initiation through angiogenic and non-angiogenic related mechanisms. BMC Cancer 17:1–17. https://doi.org/10.1186/s12885-016-3036-0

    Article  CAS  Google Scholar 

  45. Djokovic D, Trindade A, Gigante J et al (2015) Incomplete Dll4/Notch signaling inhibition promotes functional angiogenesis supporting the growth of skin papillomas. BMC Cancer 15:1–9. https://doi.org/10.1186/s12885-015-1605-2

    Article  CAS  Google Scholar 

  46. Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137. https://doi.org/10.1007/s10456-009-9147-3

    Article  CAS  PubMed  Google Scholar 

  47. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32. https://doi.org/10.1186/1750-1326-5-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Phng L-K, Gerhardt H (2009) Angiogenesis: a team effort coordinated by Notch. Dev Cell 16:196–208. https://doi.org/10.1016/j.devcel.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  49. Kaessmeyer S, Bhoola K, Baltic S et al (2014) Lung cancer neovascularisation: cellular and molecular interaction between endothelial and lung cancer cells. Immunobiology 219:308–314. https://doi.org/10.1016/j.imbio.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  50. Liu D, Martin V, Fueyo J et al (2010) Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget 1:700–709

    Article  PubMed  PubMed Central  Google Scholar 

  51. Indraccolo S, Minuzzo S, Masiero M et al (2009) Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res 69:1314–1323. https://doi.org/10.1158/0008-5472.CAN-08-2791

    Article  CAS  PubMed  Google Scholar 

  52. Ding X-Y, Ding J, Wu K et al (2012) Cross-talk between endothelial cells and tumor via delta-like ligand4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene 31:2899–2906. https://doi.org/10.1038/onc.2011.467

    Article  CAS  PubMed  Google Scholar 

  53. Rofstad EK, Mathiesen B (2010) Metastasis in melanoma xenografts is associated with tumor microvascular density rather than extent of hypoxia. Neoplasia 12:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hugo Pissarra for the assistance in the histological analysis of lung metastases.

Funding

This work was supported by the Portuguese Foundation for Science and Technology (FCT; http://www.fct.pt/index.phtml.en), Grants PTDC/SAU-ONC/116164/2009 and PTDC/SAU-ONC/121742/2010 to AT. CIISA has provided support through Project UID/CVT/276/2019, funded by FCT. LM is a PhD student supported by a studentship from FCT (Grant No. SFRH/BD/74229/2010). AT is a Postdoctoral Researcher supported by FCT (Grant No. SFRH/BPD/110174/2015). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Trindade.

Ethics declarations

Conflict of interest

The authors have no conflicting financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, L., Trindade, A., Carvalho, C. et al. Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells. Clin Exp Metastasis 36, 365–380 (2019). https://doi.org/10.1007/s10585-019-09973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-09973-2

Keywords

Navigation