Skip to main content

Advertisement

Log in

The application of a murine bone bioreactor as a model of tumor: bone interaction

  • Original paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

A limited number of in vivo models that rapidly assess bone development or allow for the study of tumor progression in a closed in vivo environment exist. To address this, we have used bone tissue engineering techniques to generate a murine in vivo bone bioreactor. The bioreactor was created by implanting an osteoconductive hydroxyapatite scaffold pre-loaded with saline as a control or with bone morphogenetic protein-2 (BMP-2) to the murine femoral artery. Control and BMP-2 bioreactors were harvested and histologically assessed for vascularization and bone formation at 6 and 12 weeks post implantation. BMP-2 significantly enhanced the formation of osteoid within the bioreactor in comparison to the controls. To test the in vivo bone bioreactor as a model of tumor: bone interaction, FVB mice were implanted with control or BMP-2 treated bioreactors. After 6 weeks, an osteolytic inducing mammary tumor cell line tagged with luciferase (PyMT-Luc) derived from the polyoma virus middle T (PyMT) model of mammary tumorigenesis was delivered to the bioreactor via the femoral artery. Analysis of luciferase expression over time demonstrated that the presence of osteoid in the BMP-2 treated bioreactors significantly enhanced the growth rate of the PyMT-Luc cells in comparison to the control group. These data present a unique in vivo model of ectopic bone formation that can be manipulated to address molecular questions that pertain to bone development and tumor progression in a bone environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8:131–136

    Article  PubMed  CAS  Google Scholar 

  2. Holt GE, Halpern JL, Dovan TT et al (2005) Evolution of an in vivo bioreactor. J Orthop Res 23:916–923

    Article  PubMed  CAS  Google Scholar 

  3. Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  4. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  PubMed  CAS  Google Scholar 

  5. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  PubMed  CAS  Google Scholar 

  6. Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367S:S68–S83

    Article  Google Scholar 

  7. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16:247–252

    Article  PubMed  CAS  Google Scholar 

  8. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12:549–583

    Article  PubMed  CAS  Google Scholar 

  9. Keller ET, Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91:718–729

    Article  PubMed  CAS  Google Scholar 

  10. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  PubMed  CAS  Google Scholar 

  11. Guise TA, Chirgwin JM (2003) Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res 415S:S32–S38

    Article  Google Scholar 

  12. Ritchie CK, Andrews LR, Thomas KG et al (1997) The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: implications for the development of metastatic disease. Endocrinology 138:1145–1150

    Article  PubMed  CAS  Google Scholar 

  13. Goya M, Miyamoto S, Nagai K et al (2004) Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res 64:6252–6258

    Article  PubMed  CAS  Google Scholar 

  14. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  15. Guise TA, Yin JJ, Taylor SD et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    PubMed  CAS  Google Scholar 

  16. Zhang J, Dai J, Qi Y et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244

    PubMed  CAS  Google Scholar 

  17. Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458

    Article  PubMed  CAS  Google Scholar 

  18. Nelson JB, Nguyen SH, Wu-Wong JR et al (1999) New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 53:1063–1069

    Article  PubMed  CAS  Google Scholar 

  19. Welch DR, Harms JF, Mastro AM et al (2003) Breast cancer metastasis to bone: evolving models and research challenges. J Musculoskelet Neuronal Interact 3:30–38

    PubMed  CAS  Google Scholar 

  20. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  21. Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  PubMed  CAS  Google Scholar 

  22. Corey E, Quinn JE, Bladou F et al (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52:20–33

    Article  PubMed  Google Scholar 

  23. Singh AS, Figg WD (2005) In vivo models of prostate cancer metastasis to bone. J Urol 174:820–826

    Article  PubMed  Google Scholar 

  24. Harms JF, Welch DR, Samant RS et al (2004) A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 21:119–128

    Article  PubMed  CAS  Google Scholar 

  25. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  26. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222

    Article  PubMed  CAS  Google Scholar 

  27. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  28. Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  29. Helfrich MH, Ralston SH (2003) Bone Research Protocols. Humana Press, USA

    Book  Google Scholar 

  30. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    PubMed  CAS  Google Scholar 

  31. Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636

    Article  PubMed  CAS  Google Scholar 

  32. Ripamonti U, Schnitzler CM, Cleaton-Jones PC (1989) Bone induction in a composite allogeneic bone/alloplastic implant. J Oral Maxillofac Surg 47:963–969

    Article  PubMed  CAS  Google Scholar 

  33. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35

    Article  PubMed  CAS  Google Scholar 

  34. Irie K, Alpaslan C, Takahashi K et al (2003) Osteoclast differentiation in ectopic bone formation induced by recombinant human bone morphogenetic protein 2 (rhBMP-2). J Bone Miner Metab 21:363–369

    Article  PubMed  CAS  Google Scholar 

  35. Saito A, Suzuki Y, Ogata S et al (2004) Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. J Biomed Mater Res A 70:115–121

    Article  PubMed  CAS  Google Scholar 

  36. Redey SA, Razzouk S, Rey C et al (1999) Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res 45:140–147

    Article  PubMed  CAS  Google Scholar 

  37. Botelho CM, Brooks RA, Spence G et al (2006) Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite. J Biomed Mater Res A 78(4):709–720

    Article  CAS  Google Scholar 

  38. Kaneko H, Arakawa T, Mano H et al (2000) Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27:479–486

    Article  PubMed  CAS  Google Scholar 

  39. Itoh K, Udagawa N, Katagiri T et al (2001) Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology 142:3656–3662

    Article  PubMed  CAS  Google Scholar 

  40. Lelekakis M, Moseley JM, Martin TJ et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  PubMed  CAS  Google Scholar 

  41. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Tr 32:73–84

    Article  CAS  Google Scholar 

  42. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  CAS  Google Scholar 

  43. Fournier PG, Chirgwin JM, Guise TA (2006) New insights into the role of T cells in the vicious cycle of bone metastases. Curr Opin Rheumatol 18:396–404

    Article  PubMed  CAS  Google Scholar 

  44. Langenfeld EM, Kong Y, Langenfeld J (2005) Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene 25(5):685–692

    Article  CAS  Google Scholar 

  45. Bakewell SJ, Nestor P, Prasad S et al (2003) Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 100:14205–14210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant CA103079 (LMM and HSS) and by the Susan G. Komen Foundation grant PDF02–1394 (CCL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginger E. Holt.

Additional information

Authors Jennifer Halpern and Conor C. Lynch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpern, J., Lynch, C.C., Fleming, J. et al. The application of a murine bone bioreactor as a model of tumor: bone interaction. Clin Exp Metastasis 23, 345–356 (2006). https://doi.org/10.1007/s10585-006-9044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9044-8

Keywords

Navigation