Skip to main content
Log in

The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The organization of centromeric chromatin of diploid barley (Hordeum vulgare) encoding two (α and β) CENH3 variants was analysed by super-resolution microscopy. Antibody staining revealed that both CENH3 variants are organized in distinct but intermingled subdomains in interphase, mitotic and meiotic centromeres. Artificially extended chromatin fibres illustrate that these subdomains are formed by polynucleosome clusters. Thus, a CENH3 variant-specific loading followed by the arrangement into specific intermingling subdomains forming the centromere region appears. The CENH3 composition and transcription vary among different tissues. In young embryos, most interphase centromeres are composed of both CENH3 variants, while in meristematic root cells, a high number of nuclei contain βCENH3 mainly dispersed within the nucleoplasm. A similar distribution and no preferential arrangement of the two CENH3 variants in relationship to the spindle poles suggest that both homologs meet the same function in metaphase cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CENH3:

Centromeric histone H3 variant

CENP-C:

Centromere protein C

SIM:

Structured illumination microscopy

References

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9(12):923–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai YW, Zhou Z, Feng HQ, Zhou BR (2011) Recognition of centromeric histone variant CenH3s by their chaperones. Structurally conserved or not. Cell Cycle 10(19):3217–3218. doi:10.4161/cc.10.19.17077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blattner FR (2004) Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33(2):289–299

    Article  CAS  PubMed  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2(3):319–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodor DL, Mata JF, Sergeev M, David AF, Salimian KJ, Panchenko T, Cleveland DW, Black BE, Shah JV, Jansen LE (2014) The quantitative architecture of centromeric chromatin. eLife 3:e02137. doi:10.7554/eLife.02137

    Article  PubMed Central  PubMed  Google Scholar 

  • Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794–805. doi:10.1016/j.molcel.2009.07.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189(7):1143–1155. doi:10.1083/jcb.201001013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Allshire RC, Black BE, Bloom K, Brinkley BR, Brown W, Cheeseman IM, Choo KH, Copenhaver GP, Deluca JG, Desai A, Diekmann S, Erhardt S, Fitzgerald-Hayes M, Foltz D, Fukagawa T, Gassmann R, Gerlich DW, Glover DM, Gorbsky GJ, Harrison SC, Heun P, Hirota T, Jansen LE, Karpen G, Kops GJ, Lampson MA, Lens SM, Losada A, Luger K, Maiato H, Maddox PS, Margolis RL, Masumoto H, McAinsh AD, Mellone BG, Meraldi P, Musacchio A, Oegema K, O’Neill RJ, Salmon ED, Scott KC, Straight AF, Stukenberg PT, Sullivan BA, Sullivan KF, Sunkel CE, Swedlow JR, Walczak CE, Warburton PE, Westermann S, Willard HF, Wordeman L, Yanagida M, Yen TJ, Yoda K, Cleveland DW (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res 21(2):101–106. doi:10.1007/s10577-013-9347-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heckmann S, Lermontova I, Berckmans B, De Veylder L, Baumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J 68(4):646–656. doi:10.1111/j.1365-313X.2011.04715.x

    Article  CAS  PubMed  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10(3):303–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirsch CD, Wu YF, Yan HH, Jiang JM (2009) Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species. Mol Biol Evol 26(12):2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Jasencakova Z, Meister A, Schubert I (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Kagawa N., Hori T, Yuko Hoki Y, Hosoya O, Tsutsui K, Saga Y, Sado T, Fukagawa T (2014) The CENPO complex requirement varis among different cell types. Chromosome Res 22 (3): 293–303

  • Kawabe A, Nasuda S, Charlesworth D (2006) Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174(4):2021–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18(10):2443–2451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I (2013) Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 Variant cenH3 deposition at centromeres. Plant Cell 25(9):3389–3404. doi:10.1105/tpc.113.114736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389(6648):251–260

    Article  CAS  PubMed  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82(2):261–282. doi:10.1016/j.ajhg.2007.11.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moraes IC, Lermontova I, Schubert I (2011) Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol 75(3):253–261. doi:10.1007/s11103-010-9723-3

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118(2):249–257

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8(6):e1002777. doi:10.1371/journal.pgen.1002777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648. doi:10.1038/msb.2013.4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101(26):9903–9908. doi:10.1073/pnas.0307901101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108(33):E498–E505. doi:10.1073/pnas.1103190108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schroeder-Reiter E, Sanei M, Houben A, Wanner G (2012) Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. J Microsc 246(1):96–106. doi:10.1111/j.1365-2818.2011.03592.x

    Article  CAS  PubMed  Google Scholar 

  • Shang WH, Hori T, Martins NMC, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2013) Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 24(6):635–648. doi:10.1016/j.devcel.2013.02.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shelden E, Wadsworth P (1993) Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 120(4):935–945

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11(11):1076–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114(Pt 19):3529–3542

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (FKZ 0315965). We are grateful to Oda Weiß, Katrin Kumke and Karla Meier for excellent technical assistance and to Karin Lipfert for help with artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Additional information

Responsible Editor: Hans de Jong.

Takayoshi Ishii and Raheleh Karimi-Ashtiyani contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rotating barley metaphase chromosomes showing the centromeric localization of α and βCENH3. (AVI 4910 kb)

Enlargment of the centromeric region shown in Suppl. Movie 1. (AVI 5970 kb)

ESM 1

(DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, T., Karimi-Ashtiyani, R., Banaei-Moghaddam, A.M. et al. The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosome Res 23, 277–284 (2015). https://doi.org/10.1007/s10577-015-9466-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9466-8

Keywords

Navigation