Skip to main content
Log in

The telomere repeat motif of basal Metazoa

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In most eukaryotes the telomeres consist of short DNA tandem repeats and associated proteins. Telomeric repeats are added to the chromosome ends by telomerase, a specialized reverse transcriptase. We examined telomerase activity and telomere repeat sequences in representatives of basal metazoan groups. Our results show that the ‘vertebrate’ telomere motif (TTAGGG) n is present in all basal metazoan groups, i.e. sponges, Cnidaria, Ctenophora, and Placozoa, and also in the unicellular metazoan sister group, the Choanozoa. Thus it can be considered the ancestral telomere repeat motif of Metazoa. It has been conserved from the metazoan radiation in most animal phylogenetic lineages, and replaced by other motifs–according to our present knowledge–only in two major lineages, Arthropoda and Nematoda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn IY, Winter CE (2006) The genome of Oscheius tipulae: determination of size, complexity, and structure by DNA reassociation using fluorescent dye. Genome 49: 1007–1015.

    Article  PubMed  Google Scholar 

  • Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere maintenance. Cell Mol Life Sci 60: 2325–2333.

    Article  PubMed  CAS  Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular clocks do not support the Cambrian explosion. Mol Biol Evol 22: 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ et al. (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Castro LFC, Holland PWH (2002) Fluorescent in situ hybridisation to amphioxus chromosomes. Zool Sci 19: 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta S, Xu A, Sagasser S et al. (2006) Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 103: 8751–8756.

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Sýkorová E, Leitch A (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13: 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Frydrychová R, Grossmann P, Trubač P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47: 163–178.

    Article  PubMed  Google Scholar 

  • Giribet G (2002) Current advances in the phylogenetic reconstruction of metazoan evolution: a new paradigm for the Cambrian explosion? Mol Biol Evol 24: 345–357.

    CAS  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35: 229–256.

    Article  Google Scholar 

  • Henning KA, Moskowitz N, Ashlock MA, Liu PP (1998) Humanizing the yeast telomerase template. Proc Natl Acad Sci USA 95: 5667–5671.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, LoVerde PT (1996) Identification of the telomeres on Schistosoma mansoni chromosomes by FISH. J Parasitol 82: 511–512.

    Article  PubMed  CAS  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S et al. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23: 1792–1800.

    Article  PubMed  CAS  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19: 4780.

    Article  PubMed  CAS  Google Scholar 

  • Imsiecke G, Pascheberg U, Mueller WEG (1993) Preparation and karyotype analysis of mitotic chromosomes of the freshwater sponge Spongilla lacustris. Chromosoma 102: 724–727.

    Article  PubMed  CAS  Google Scholar 

  • Jha AN, Dominiquez I, Balajee AS, Hutchinson TH, Dixon DR, Natarajan AT (1995) Localization of a vertebrate telomeric sequence in the chromosomes of two marine worms (phylum Annelida, class Polychaeta). Chromosome Res 3: 507–508.

    Article  PubMed  CAS  Google Scholar 

  • Joffe BI, Solovei IV, Macgregor HC (1998) Ends of chromosomes in Polycelis tenuis (Platyhelminthes) have telomere repeat TTAGGG. Chromosome Res 4: 323–324.

    Article  Google Scholar 

  • Keeling P, Burger G, Durnford DG et al. (2005) The tree of eukaryotes. Trend Ecol Evol 20: 670–676.

    Article  Google Scholar 

  • Kim NW, Piatyscek MA, Prowse KR et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  • Kirk KE, Harmon BP, Reichardt IK, Sedat JW, Blackburn EH (1997) Block in anaphase separation caused by a telomerase template mutation. Science 275: 1478–1481.

    Article  PubMed  CAS  Google Scholar 

  • Klapper W, Singh KK, Heidorn K, Parwaresch R, Krupp G (1998) Regulation of telomerase activity in quiescent immortalized human cells. Biochim Biophys Acta 1442: 120–126.

    PubMed  CAS  Google Scholar 

  • Koziol C, Borojevic R, Steffen R, Müller WEG (1998) Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells. Mech Ageing Dev 100: 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Laird DJ, Weissman IL (2004) Telomerase maintained in self-renewing tissues during serial regeneration of the urochordate Bothryllus schosserii. Dev Biol 273: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12: 1773–1778.

    Article  PubMed  CAS  Google Scholar 

  • Makino S (1951) An Atlas of the Chromosome Numbers in Animals. Ames, Iowa: Iowa State College Press.

    Google Scholar 

  • McEachern MJ, Blackburn EH (1995) Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376: 403–409.

    Article  PubMed  CAS  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358.

    Article  PubMed  CAS  Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG) n among vertebrates. Proc Natl Acad Sci USA 86: 7049–7053.

    Article  PubMed  CAS  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG) n , present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626.

    Article  PubMed  CAS  Google Scholar 

  • Muller F, Wicky C, Spicher A, Tobler H (1991) New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell 67: 815–822.

    Article  PubMed  CAS  Google Scholar 

  • Murchie AI, Lilley DMJ (1994) Tetraplex folding of telomere sequences and the inclusion of adenine bases. EMBO J 13: 993–1001.

    PubMed  CAS  Google Scholar 

  • Niedermaier J, Moritz KB (2000) Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma 109: 439–452.

    PubMed  CAS  Google Scholar 

  • Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence, (TTAGG) n in the silkworm Bombyx mori and in other insects. Mol Cell Biol 13: 1424–1432.

    PubMed  CAS  Google Scholar 

  • Osanai M, Kojima KK, Futahashi R, Yaguchi S, Fujiwara H (2006) Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004). Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21: 1740–1752.

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22: 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  • Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4: 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Plohl M, Prats E, Martinez-Lage A, Gonzalez-Tizon A, Mendez J, Cornudella L (2002) Telomeric localization of the vertebrate-type hexamer repeat, (TTAGGG) n , in the wedgeshell clam Donax trunculus and other marine invertebrate genomes. J Biol Chem 277: 19839–19846.

    Article  PubMed  CAS  Google Scholar 

  • Prescott J, Blackburn EH (2000) Telomerase RNA template mutations reveal sequence-specific requirements for the activation and repression of telomerase action at telomeres. Mol Cell Biol 20: 2941–2948.

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Krüger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310: 1933–1938.

    Article  PubMed  Google Scholar 

  • Rosén M, Edström J (2000) DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol 9: 341–347.

    Article  PubMed  Google Scholar 

  • Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7: 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Fujiwara H (2000) Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267: 3025–3031.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair CS, Richmond RH, Ostrander GK (2007) Characterization of the telomere regions of scleractinian coral, Acropora surculosa. Genetica 129: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23: 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MT, Gilson E (2005) Telomere maintenance, function and evolution: the yesast paradigm. Chromosome Res 13: 535–548.

    Article  PubMed  CAS  Google Scholar 

  • Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG) n . Chromosome Res 13: 145–156.

    Article  PubMed  Google Scholar 

  • Vitturi R, Colomba MS, Gianguzza P, Pirrone AM (2000a) Chromosomal location of ribosomal DNA (rDNA), (GATA) n and (TTAGGG) n telomeric repeats in the neogastropod Fasciolaria lignaria (Mollusca: Prosobranchia). Genetica 108: 253–257.

    Article  CAS  Google Scholar 

  • Vitturi R, Gianguzza P, Colomba MS, Jensen KR, Riggio S (2000b) Cytogenetics in the sacoglossan Oxynoe olivacea (Mollusca: Opisthobranchia): karyotype, chromosome banding and fluorescent in situ hybridization. Marine Biol 137: 577–582.

    Article  Google Scholar 

  • Vitturi R, Libertini A, Armetta F, Sparacino L, Colomba MS (2002) Chromosome analysis and FISH mapping of ribosomal DNA (rDNA), telomeric (TTAGGG) n and (GATA) n repeats in the leech Haemopis sanguisuga (L.) (Annelida: Hirudinea). Genetica 115: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Walter MF, Bozorgnia L, Maheshwari A, Biessmann H (2001) The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae. Insect Mol Biol 10: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Wang YP, Guo XM (2001) Chromosomal mapping of the vertebrate telomeric sequence (TTAGGG) n in four bivalve molluscs by fluorescence in situ hybridization. J Shellfish Res 20: 1187–1190.

    Google Scholar 

  • Weichenhan D (1991) Fast recovery of DNA from agarose gels by centrifugation through blotting paper. Trends Genet 7: 109.

    Article  Google Scholar 

  • Yu GL, Bradley JD, Attardi LD, Blackburn EH (1990) In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Zacharias H, Anokhin B, Khalturin K, Bosch TCG (2004) Genome sizes and chromosomes in the basal metazoan Hydra. Zoology 107: 219–227.

    Article  PubMed  Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270: 1601–1607.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walther Traut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traut, W., Szczepanowski, M., Vítková, M. et al. The telomere repeat motif of basal Metazoa. Chromosome Res 15, 371–382 (2007). https://doi.org/10.1007/s10577-007-1132-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1132-3

Key words

Navigation