Skip to main content
Log in

SMN Deficiency Reduces Cellular Ability to Form Stress Granules, Sensitizing Cells to Stress

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal Muscular Atrophy (SMA) is a neurodegenerative disease that is caused by deletion of the SMN (Survival of Motor Neuron) gene. The SMN protein is essential for cell survival and co-localized with TIA-1/R and G3BP, two characteristic markers of stress granules (SGs). To further study the SMN function in stress granules and in response to stress, we generated stable cell lines with SMN knockdown. Our data indicate that suppression of SMN drastically reduces cellular ability to form stress granules in response to stress treatment. In addition, we show that SMN deficiency sensitizes cells to sodium arsenite and H2O2, two well-known stress inducers, leading to cell death at a much lower concentration of inducers in SMN knockdown cells than in control cells. Interestingly, the cell death is correlated with formation of stress granules, suggesting that involvement of SMN in formation of stress granules may play an important role in cell survival. Furthermore, rescue of SGs formation by overexpression of G3BP can reverse the defective formation of stress granules and results in partial abrogation of cell death against SMN deficiency. We deduce that modulation of stress response may be useful for potential SMN treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115(Pt 16):3227–3234

    PubMed  CAS  Google Scholar 

  • Baccon J, Pellizzoni L et al (2002) Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem 277(35):31957–31962

    Article  PubMed  CAS  Google Scholar 

  • Batulan Z, Shinder GA et al (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23(13):5789–5798

    PubMed  CAS  Google Scholar 

  • Berlanga JJ, Herrero S et al (1998) Characterization of the hemin-sensitive eukaryotic initiation factor 2alpha kinase from mouse nonerythroid cells. J Biol Chem 273(48):32340–32346

    Article  PubMed  CAS  Google Scholar 

  • Burlet P, Huber C et al (1998) The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 7(12):1927–1933

    Article  PubMed  CAS  Google Scholar 

  • Carissimi C, Saieva L et al (2006) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281(12):8126–8134

    Article  PubMed  CAS  Google Scholar 

  • Carrel TL, McWhorter ML et al (2006) Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J Neurosci 26(43):11014–11022

    Article  PubMed  CAS  Google Scholar 

  • Charroux B, Pellizzoni L et al (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147(6):1181–1194

    Article  PubMed  CAS  Google Scholar 

  • Charroux B, Pellizzoni L et al (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148(6):1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Clemens MJ (2001) Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27:57–89

    PubMed  CAS  Google Scholar 

  • Coovert DD, Le TT et al (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6(8):1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3(2):97–110

    Article  PubMed  CAS  Google Scholar 

  • Dey M, Trieselmann B et al (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 25(8):3063–3075

    Article  PubMed  CAS  Google Scholar 

  • Dodds E, Dunckley MG et al (2001) Overexpressed human survival motor neurone isoforms, SMNDeltaexon7 and SMN+exon7, both form intranuclear gems but differ in cytoplasmic distribution. FEBS Lett 495(1–2):31–38

    Article  PubMed  CAS  Google Scholar 

  • Gangwani L, Mikrut M et al (2001) Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol 3(4):376–383

    Article  PubMed  CAS  Google Scholar 

  • Gray NK, Wickens M (1998) Control of translation initiation in animals. Annu Rev Cell Dev Biol 14:399–458

    Article  PubMed  CAS  Google Scholar 

  • Gubitz AK, Mourelatos Z et al (2002) Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 277(7):5631–5636

    Article  PubMed  CAS  Google Scholar 

  • Hannus S, Buhler D et al (2000) The Schizosaccharomyces pombe protein Yab8p and a novel factor, Yip1p, share structural and functional similarity with the spinal muscular atrophy-associated proteins SMN and SIP1. Hum Mol Genet 9(5):663–674

    Article  PubMed  CAS  Google Scholar 

  • Hsieh-Li HM, Chang JG et al (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Zhou J (2004a) Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem Biophys Res Commun 314(1):268–276

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Zhou J (2004b) Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 572(1–3):69–74

    Article  PubMed  CAS  Google Scholar 

  • Iannaccone ST (1998) Spinal muscular atrophy. Semin Neurol 18(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Jablonka S, Karle K et al (2006) Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum Mol Genet 15(3):511–518

    Article  PubMed  CAS  Google Scholar 

  • Kedersha NL, Gupta M et al (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147(7):1431–1442

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Cho MR et al (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151(6):1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Chen S et al (2002) Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 13(1):195–210

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Burglen L et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15(14):3555–3565

    PubMed  CAS  Google Scholar 

  • Liu Q, Fischer U et al (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90(6):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Strasswimmer J et al (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19(1):63–66

    Article  PubMed  CAS  Google Scholar 

  • Manzerra P, Brown IR (1992) Expression of heat shock genes (hsp70) in the rabbit spinal cord: localization of constitutive and hyperthermia-inducible mRNA species. J Neurosci Res 31(4):606–615

    Article  PubMed  CAS  Google Scholar 

  • Manzerra P, Brown IR (1996) The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp Cell Res 229(1):35–47

    Article  PubMed  CAS  Google Scholar 

  • McEwen E, Kedersha N et al (2005) Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 280(17):16925–16933

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Buhler D et al (2000) Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum Mol Genet 9(13):1977–1986

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Eggert C et al (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12(10):472–478

    Article  PubMed  CAS  Google Scholar 

  • Melki J (1997) Spinal muscular atrophy. Curr Opin Neurol 10(5):381–385

    Article  PubMed  CAS  Google Scholar 

  • Monani UR, Sendtner M et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9(3):333–339

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD et al (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9(3):1298–1308

    PubMed  CAS  Google Scholar 

  • Pagliardini S, Giavazzi A et al (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet 9(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Paushkin S, Gubitz AK et al (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14(3):305–312

    Article  PubMed  CAS  Google Scholar 

  • Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1(8174):919–922

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Kataoka N et al (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95(5):615–624

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Baccon J et al (2002) Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Biol Chem 277(9):7540–7545

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Kroning AK et al (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11(1):93–105

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Jablonka S et al (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163(4):801–812

    Article  PubMed  CAS  Google Scholar 

  • Sahin M, Greer PL et al (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46(2):191–204

    Article  PubMed  CAS  Google Scholar 

  • Schrank B, Gotz R et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94(18):9920–9925

    Article  PubMed  CAS  Google Scholar 

  • Sleeman JE, Trinkle-Mulcahy L et al (2003) Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. J Cell Sci 116(Pt 10):2039–2050

    Article  PubMed  CAS  Google Scholar 

  • Todd AG, Shaw DJ et al (2010) SMN and the Gemin proteins form sub-complexes that localise to both stationary and dynamic neurite granules. Biochem Biophys Res Commun 394(1):211–216

    Google Scholar 

  • Tourriere H, Chebli K et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160(6):823–831

    Article  PubMed  CAS  Google Scholar 

  • Vyas S, Bechade C et al (2002) Involvement of survival motor neuron (SMN) protein in cell death. Hum Mol Genet 11(22):2751–2764

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Dreyfuss G (2001) A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. J Biol Chem 276(13):9599–9605

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mani SA et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  PubMed  CAS  Google Scholar 

  • Young PJ, Man NT et al (2000) The exon 2b region of the spinal muscular atrophy protein, SMN, is involved in self-association and SIP1 binding. Hum Mol Genet 9(19):2869–2877

    Article  PubMed  CAS  Google Scholar 

  • Zhan K, Vattem KM et al (2002) Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for resistance to environmental stresses. Mol Cell Biol 22(20):7134–7146

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, McGrath B et al (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22(11):3864–3874

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Pan F et al (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23(16):6627–6637

    PubMed  CAS  Google Scholar 

  • Zhang Z, Lotti F et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133(4):585–600

    Article  PubMed  CAS  Google Scholar 

  • Zou T, Ling C et al (2006) Exogenous tissue plasminogen activator enhances peripheral nerve regeneration and functional recovery after injury in mice. J Neuropathol Exp Neurol 65(1):78–86

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D et al (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, T., Yang, X., Pan, D. et al. SMN Deficiency Reduces Cellular Ability to Form Stress Granules, Sensitizing Cells to Stress. Cell Mol Neurobiol 31, 541–550 (2011). https://doi.org/10.1007/s10571-011-9647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9647-8

Keywords

Navigation