Skip to main content

Advertisement

Log in

Wnts and the hallmarks of cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Since the discovery of the first mammalian Wnt proto-oncogene in virus-induced mouse mammary tumors almost four decades ago, Wnt signaling pathway and its involvement in cancers have been extensively investigated. Activation of this evolutionarily conserved pathway promotes cancer development via diverse mechanisms. Cancer is a complex disease and one outstanding conceptual framework for understanding its biology is the “Hallmarks of Cancer”. In this review, we focus on the involvement of Wnt signaling in the ten hallmarks of human cancer. These widespread roles of Wnt signaling in human cancers highlight the importance and feasibility of targeting this signaling pathway for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Srivastava, M., Begovic, E., Chapman, J., Putnam, N. H., Hellsten, U., Kawashima, T., et al. (2008). The Trichoplax genome and the nature of placozoans. Nature, 454(7207), 955–960. https://doi.org/10.1038/nature07191.

    Article  PubMed  CAS  Google Scholar 

  2. Nichols, S. A., Dirks, W., Pearse, J. S., & King, N. (2006). Early evolution of animal cell signaling and adhesion genes. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12451–12456. https://doi.org/10.1073/pnas.0604065103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Loh, K. M., van Amerongen, R., & Nusse, R. (2016). Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Developmental Cell, 38(6), 643–655. https://doi.org/10.1016/j.devcel.2016.08.011.

    Article  PubMed  CAS  Google Scholar 

  4. Nusse, R., & Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1), 99–109.

    Article  CAS  PubMed  Google Scholar 

  5. Aoki, K., & Taketo, M. M. (2007). Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. Journal of Cell Science, 120(Pt 19), 3327–3335. https://doi.org/10.1242/jcs.03485.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, J., & Virshup, D. M. (2014). Updating the Wnt pathways. Bioscience Reports, 34(5). https://doi.org/10.1042/BSR20140119.

  7. Steinhart, Z., & Angers, S. (2018). Wnt signaling in development and tissue homeostasis. Development, 145(11), dev146589. https://doi.org/10.1242/dev.146589.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  PubMed  CAS  Google Scholar 

  9. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  PubMed  CAS  Google Scholar 

  10. Obaya, A. J., & Sedivy, J. M. (2002). Regulation of cyclin-Cdk activity in mammalian cells. Cellular and Molecular Life Sciences, 59(1), 126–142. https://doi.org/10.1007/s00018-002-8410-1.

    Article  PubMed  CAS  Google Scholar 

  11. Massagué, J. (2004). G1 cell-cycle control and cancer. Nature, 432(7015), 298–306. https://doi.org/10.1038/nature03094.

    Article  PubMed  CAS  Google Scholar 

  12. Niehrs, C., & Acebron, S. P. (2012). Mitotic and mitogenic Wnt signalling. The EMBO Journal, 31(12), 2705–2713. https://doi.org/10.1038/emboj.2012.124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281(5382), 1509–1512. https://doi.org/10.1126/science.281.5382.1509.

    Article  PubMed  CAS  Google Scholar 

  14. Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426. https://doi.org/10.1038/18884.

    Article  PubMed  CAS  Google Scholar 

  15. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., & Ben-Ze'ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5522–5527. https://doi.org/10.1073/pnas.96.10.5522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Diehl, J. A., Cheng, M., Roussel, M. F., & Sherr, C. J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes & Development, 12(22), 3499–3511. https://doi.org/10.1101/gad.12.22.3499.

    Article  CAS  Google Scholar 

  17. Welcker, M., Singer, J., Loeb, K. R., Grim, J., Bloecher, A., Gurien-West, M., et al. (2003). Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Molecular Cell, 12(2), 381–392. https://doi.org/10.1016/s1097-2765(03)00287-9.

    Article  PubMed  CAS  Google Scholar 

  18. Welcker, M., Orian, A., Jin, J., Grim, J. E., Grim, J. A., Harper, J. W., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090. https://doi.org/10.1073/pnas.0402770101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Acebron, S. P., Karaulanov, E., Berger, B. S., Huang, Y.-L., & Niehrs, C. (2014). Mitotic wnt signaling promotes protein stabilization and regulates cell size. Molecular Cell, 54(4), 663–674. https://doi.org/10.1016/j.molcel.2014.04.014.

    Article  PubMed  CAS  Google Scholar 

  20. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850. https://doi.org/10.1038/nature03319.

    Article  PubMed  CAS  Google Scholar 

  21. Leung, C., Tan, S. H., & Barker, N. (2018). Recent advances in Lgr5+ stem cell research. Trends in Cell Biology, 28(5), 380–391. https://doi.org/10.1016/j.tcb.2018.01.010.

    Article  PubMed  CAS  Google Scholar 

  22. Orford, K. W., & Scadden, D. T. (2008). Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nature reviews Genetics, 9(2), 115–128. https://doi.org/10.1038/nrg2269.

  23. Kabiri, Z., Greicius, G., Zaribafzadeh, H., Hemmerich, A., Counter, C. M., & Virshup, D. M. (2018). Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells. The Journal of Clinical Investigation, 128(9). https://doi.org/10.1172/JCI99325.

  24. Riemer, P., Sreekumar, A., Reinke, S., Rad, R., Schäfer, R., Sers, C., et al. (2015). Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene, 34(24), 3164–3175. https://doi.org/10.1038/onc.2014.247.

    Article  PubMed  CAS  Google Scholar 

  25. Zhong, Z., & Virshup, D. M. (2020). Wnt signaling and drug resistance in cancer. Molecular Pharmacology, 97(2), 72–89. https://doi.org/10.1124/mol.119.117978.

    Article  PubMed  CAS  Google Scholar 

  26. Proffitt, K. D., Madan, B., Ke, Z., Pendharkar, V., Ding, L., Lee, M. A., et al. (2013). Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Research, 73(2), 502–507. https://doi.org/10.1158/0008-5472.CAN-12-2258.

    Article  PubMed  CAS  Google Scholar 

  27. Koo, B.-K., van Es, J. H., van den Born, M., & Clevers, H. (2015). Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 201508113. https://doi.org/10.1073/pnas.1508113112.

  28. Boulter, L., Guest, R. V., Kendall, T. J., Wilson, D. H., Wojtacha, D., Robson, A. J., et al. (2015). WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. The Journal of Clinical Investigation, 125(3), 1269–1285. https://doi.org/10.1172/JCI76452.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Storm, E. E., Durinck, S., de Sousa e Melo, F., Tremayne, J., Kljavin, N., Tan, C., et al. (2016). Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature, 529(7584), 97–100. https://doi.org/10.1038/nature16466.

    Article  PubMed  CAS  Google Scholar 

  30. Madan, B., Harmston, N., Nallan, G., Montoya, A., Faull, P., Petretto, E., & Virshup, D. M. (2018). Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. The Journal of Clinical Investigation, 128(12), 5620–5633. https://doi.org/10.1172/JCI122383.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin, C. Y., Lovén, J., Rahl, P. B., Paranal, R. M., Burge, C. B., Bradner, J. E., et al. (2012). Transcriptional amplification in tumor cells with elevated c-Myc. Cell, 151(1), 56–67. https://doi.org/10.1016/j.cell.2012.08.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nie, Z., Hu, G., Wei, G., Cui, K., Yamane, A., Resch, W., et al. (2012). c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell, 151(1), 68–79. https://doi.org/10.1016/j.cell.2012.08.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bretones, G., Delgado, M. D., & León, J. (2015). Myc and cell cycle control. Biochimica et Biophysica Acta, 1849(5), 506–516. https://doi.org/10.1016/j.bbagrm.2014.03.013.

    Article  PubMed  CAS  Google Scholar 

  34. van Riggelen, J., Yetil, A., & Felsher, D. W. (2010). MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Reviews. Cancer, 10(4), 301–309. https://doi.org/10.1038/nrc2819.

    Article  PubMed  CAS  Google Scholar 

  35. Dang, C. V. (2013). MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harbor Perspectives in Medicine, 3(8), a014217–a014217. https://doi.org/10.1101/cshperspect.a014217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wahlström, T., & Henriksson, M. A. (2015). Impact of MYC in regulation of tumor cell metabolism. Biochimica et Biophysica Acta, 1849(5), 563–569. https://doi.org/10.1016/j.bbagrm.2014.07.004.

    Article  PubMed  CAS  Google Scholar 

  37. Sansom, O. J., Meniel, V. S., Muncan, V., Phesse, T. J., Wilkins, J. A., Reed, K. R., et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature, 446(7136), 676–679. https://doi.org/10.1038/nature05674.

    Article  PubMed  CAS  Google Scholar 

  38. Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 49(12), 1779–1784. https://doi.org/10.1038/ng.3984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. McDonald, E. R., de Weck, A., Schlabach, M. R., Billy, E., Mavrakis, K. J., Hoffman, G. R., et al. (2017). Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell, 170(3), 577–592.e10. https://doi.org/10.1016/j.cell.2017.07.005.

    Article  PubMed  CAS  Google Scholar 

  40. Behan, F. M., Iorio, F., Picco, G., Gonçalves, E., Beaver, C. M., Migliardi, G., et al. (2019). Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature, 31, 1806. https://doi.org/10.1038/s41586-019-1103-9.

    Article  CAS  Google Scholar 

  41. Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., et al. (2015). BET inhibitor resistance emerges from leukaemia stem cells. Nature, 525(7570), 538–542. https://doi.org/10.1038/nature14888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rathert, P., Roth, M., Neumann, T., Muerdter, F., Roe, J.-S., Muhar, M., et al. (2015). Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature, 525(7570), 543–547. https://doi.org/10.1038/nature14898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Harbour, J. W., & Dean, D. C. (2000). Rb function in cell-cycle regulation and apoptosis. Nature Cell Biology, 2(4), E65–E67. https://doi.org/10.1038/35008695.

    Article  PubMed  CAS  Google Scholar 

  44. Giacinti, C., & Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25(38), 5220–5227. https://doi.org/10.1038/sj.onc.1209615.

    Article  PubMed  CAS  Google Scholar 

  45. Henley, S. A., & Dick, F. A. (2012). The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Division, 7(1), 10–14. https://doi.org/10.1186/1747-1028-7-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ohtani, K., DeGregori, J., & Nevins, J. R. (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proceedings of the National Academy of Sciences of the United States of America, 92(26), 12146–12150. https://doi.org/10.1073/pnas.92.26.12146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bracken, A. P., Ciro, M., Cocito, A., & Helin, K. (2004). E2F target genes: unraveling the biology. Trends in Biochemical Sciences, 29(8), 409–417. https://doi.org/10.1016/j.tibs.2004.06.006.

    Article  PubMed  CAS  Google Scholar 

  48. Delmas, V., Beermann, F., Martinozzi, S., Carreira, S., Ackermann, J., Kumasaka, M., et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes & Development, 21(22), 2923–2935. https://doi.org/10.1101/gad.450107.

    Article  CAS  Google Scholar 

  49. Jiang, X., Hao, H.-X., Growney, J. D., Woolfenden, S., Bottiglio, C., Ng, N., et al. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12649–12654. https://doi.org/10.1073/pnas.1307218110.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhong, Z., Sepramaniam, S., Chew, X. H., Wood, K., Lee, M. A., Madan, B., & Virshup, D. M. (2019). PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene, 67(12), 7. https://doi.org/10.1038/s41388-019-0908-1.

    Article  CAS  Google Scholar 

  51. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768. https://doi.org/10.1038/nrc2499.

    Article  PubMed  CAS  Google Scholar 

  52. Chang, J. C. (2016). Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine, 95(1 Suppl 1), S20–S25. https://doi.org/10.1097/MD.0000000000004766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Peitzsch, C., Tyutyunnykova, A., Pantel, K., & Dubrovska, A. (2017). Cancer stem cells: the root of tumor recurrence and metastases. Seminars in Cancer Biology, 44, 10–24. https://doi.org/10.1016/j.semcancer.2017.02.011.

    Article  PubMed  CAS  Google Scholar 

  54. Madan, B., Ke, Z., Harmston, N., Ho, S. Y., Frois, A. O., Alam, J., et al. (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 35(17), 2197–2207. https://doi.org/10.1038/onc.2015.280.

    Article  PubMed  CAS  Google Scholar 

  55. Steinhart, Z., Pavlovic, Z., Chandrashekhar, M., Hart, T., Wang, X., Zhang, X., et al. (2017). Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nature Medicine, 23(1), 60–68. https://doi.org/10.1038/nm.4219.

    Article  PubMed  CAS  Google Scholar 

  56. Milanovic, M., Fan, D. N. Y., Belenki, D., Däbritz, J. H. M., Zhao, Z., Yu, Y., et al. (2017). Senescence-associated reprogramming promotes cancer stemness. Nature, 15, 482. https://doi.org/10.1038/nature25167.

    Article  CAS  Google Scholar 

  57. White, E., & DiPaola, R. S. (2009). The double-edged sword of autophagy modulation in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(17), 5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023.

    Article  Google Scholar 

  58. Chen, S., Guttridge, D. C., You, Z., Zhang, Z., Fribley, A., Mayo, M. W., et al. (2001). Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. The Journal of Cell Biology, 152(1), 87–96. https://doi.org/10.1083/jcb.152.1.87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Xie, H., Huang, Z., Sadim, M. S., & Sun, Z. (2005). Stabilized beta-catenin extends thymocyte survival by up-regulating Bcl-xL. The Journal of Immunology, 175(12), 7981–7988. https://doi.org/10.4049/jimmunol.175.12.7981.

    Article  PubMed  CAS  Google Scholar 

  60. Melkonyan, H. S., Chang, W. C., Shapiro, J. P., Mahadevappa, M., Fitzpatrick, P. A., Kiefer, M. C., et al. (1997). SARPs: a family of secreted apoptosis-related proteins. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13636–13641. https://doi.org/10.1073/pnas.94.25.13636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Roth, W., Wild-Bode, C., Platten, M., Grimmel, C., Melkonyan, H. S., Dichgans, J., & Weller, M. (2000). Secreted frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene, 19(37), 4210–4220. https://doi.org/10.1038/sj.onc.1203783.

    Article  PubMed  CAS  Google Scholar 

  62. Han, X., & Amar, S. (2004). Secreted frizzled-related protein 1 (SFRP1) protects fibroblasts from ceramide-induced apoptosis. The Journal of Biological Chemistry, 279(4), 2832–2840. https://doi.org/10.1074/jbc.M308102200.

    Article  PubMed  CAS  Google Scholar 

  63. Uren, A., Reichsman, F., Anest, V., Taylor, W. G., Muraiso, K., Bottaro, D. P., et al. (2000). Secreted frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of Wnt signaling. The Journal of Biological Chemistry, 275(6), 4374–4382. https://doi.org/10.1074/jbc.275.6.4374.

    Article  PubMed  CAS  Google Scholar 

  64. Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42. https://doi.org/10.1016/j.cell.2007.12.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sánchez-Martín, P., & Komatsu, M. (2018). p62/SQSTM1 - steering the cell through health and disease. Journal of Cell Science, 131(21), jcs222836. https://doi.org/10.1242/jcs.222836.

    Article  PubMed  CAS  Google Scholar 

  66. Lee, Y.-K., & Lee, J.-A. (2016). Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Reports, 49(8), 424–430. https://doi.org/10.5483/bmbrep.2016.49.8.081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology, 12(8), 781–790. https://doi.org/10.1038/ncb2082.

    Article  PubMed  CAS  Google Scholar 

  68. Petherick, K. J., Williams, A. C., Lane, J. D., Ordóñez-Morán, P., Huelsken, J., Collard, T. J., et al. (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO Journal, 32(13), 1903–1916. https://doi.org/10.1038/emboj.2013.123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Luo, X., Ye, S., Jiang, Q., Gong, Y., Yuan, Y., Hu, X., et al. (2018). Wnt inhibitory factor-1-mediated autophagy inhibits Wnt/β-catenin signaling by downregulating dishevelled-2 expression in non-small cell lung cancer cells. International Journal of Oncology, 53(2), 904–914. https://doi.org/10.3892/ijo.2018.4442.

    Article  PubMed  CAS  Google Scholar 

  70. Colella, B., Faienza, F., Carinci, M., D'Alessandro, G., Catalano, M., Santoro, A., et al. (2019). Autophagy induction impairs Wnt/β-catenin signalling through β-catenin relocalisation in glioblastoma cells. Cellular Signalling, 53, 357–364. https://doi.org/10.1016/j.cellsig.2018.10.017.

    Article  PubMed  CAS  Google Scholar 

  71. Nàger, M., Sallán, M. C., Visa, A., Pushparaj, C., Santacana, M., Macià, A., et al. (2018). Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy, 14(4), 619–636. https://doi.org/10.1080/15548627.2017.1423439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Low, K. C., & Tergaonkar, V. (2013). Telomerase: central regulator of all of the hallmarks of cancer. Trends in Biochemical Sciences, 38(9), 426–434. https://doi.org/10.1016/j.tibs.2013.07.001.

    Article  PubMed  CAS  Google Scholar 

  73. Tang, R., Cheng, A. J., Wang, J. Y., & Wang, T. C. (1998). Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Research, 58(18), 4052–4054.

    PubMed  CAS  Google Scholar 

  74. Tahara, H., Kuniyasu, H., Yokozaki, H., Yasui, W., Shay, J. W., Ide, T., & Tahara, E. (1995). Telomerase activity in preneoplastic and neoplastic gastric and colorectal lesions. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 1(11), 1245–1251.

    CAS  Google Scholar 

  75. Mizumoto, I., Ogawa, Y., Niiyama, H., Nagai, E., Sato, I., Urashima, T., et al. (2001). Possible role of telomerase activation in the multistep tumor progression of periampullary lesions in patients with familial adenomatous polyposis. The American Journal of Gastroenterology, 96(4), 1261–1265. https://doi.org/10.1111/j.1572-0241.2001.03710.x.

    Article  PubMed  CAS  Google Scholar 

  76. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., et al. (2012). Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 336(6088), 1549–1554. https://doi.org/10.1126/science.1218370.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang, Y., Toh, L., Lau, P., & Wang, X. (2012). Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. The Journal of Biological Chemistry, 287(39), 32494–32511. https://doi.org/10.1074/jbc.M112.368282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wang, J., Xie, L. Y., Allan, S., Beach, D., & Hannon, G. J. (1998). Myc activates telomerase. Genes & Development, 12(12), 1769–1774. https://doi.org/10.1101/gad.12.12.1769.

    Article  CAS  Google Scholar 

  79. Strong, M. A., Vidal-Cardenas, S. L., Karim, B., Yu, H., Guo, N., & Greider, C. W. (2011). Phenotypes in mTERT+/ and mTERT/ mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Molecular and Cellular Biology, 31(12), 2369–2379. https://doi.org/10.1128/MCB.05312-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Listerman, I., Gazzaniga, F. S., & Blackburn, E. H. (2014). An investigation of the effects of the core protein telomerase reverse transcriptase on Wnt signaling in breast cancer cells. Molecular and Cellular Biology, 34(2), 280–289. https://doi.org/10.1128/MCB.00844-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yang, T.-L. B., Chen, Q., Deng, J. T., Jagannathan, G., Tobias, J. W., Schultz, D. C., et al. (2017). Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nature Communications, 8(1), 14766–14710. https://doi.org/10.1038/ncomms14766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L., & Matrisian, L. M. (1997). Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proceedings of the National Academy of Sciences of the United States of America, 94(4), 1402–1407. https://doi.org/10.1073/pnas.94.4.1402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Brabletz, T., Jung, A., Dag, S., Hlubek, F., & Kirchner, T. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American Journal of Pathology, 155(4), 1033–1038. https://doi.org/10.1016/s0002-9440(10)65204-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lévy, L., Neuveut, C., Renard, C.-A., Charneau, P., Branchereau, S., Gauthier, F., et al. (2002). Transcriptional activation of interleukin-8 by beta-catenin-Tcf4. The Journal of Biological Chemistry, 277(44), 42386–42393. https://doi.org/10.1074/jbc.M207418200.

    Article  PubMed  CAS  Google Scholar 

  85. Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. The Journal of Immunology, 170(6), 3369–3376. https://doi.org/10.4049/jimmunol.170.6.3369.

    Article  PubMed  CAS  Google Scholar 

  86. Ferrara, N., Hillan, K. J., Gerber, H.-P., & Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews Drug Discovery, 3(5), 391–400. https://doi.org/10.1038/nrd1381.

    Article  PubMed  CAS  Google Scholar 

  87. Krock, B. L., Skuli, N., & Simon, M. C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes & Cancer, 2(12), 1117–1133. https://doi.org/10.1177/1947601911423654.

    Article  CAS  Google Scholar 

  88. Zhang, X., Gaspard, J. P., & Chung, D. C. (2001). Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Research, 61(16), 6050–6054.

    PubMed  CAS  Google Scholar 

  89. Easwaran, V., Lee, S. H., Inge, L., Guo, L., Goldbeck, C., Garrett, E., et al. (2003). Beta-catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Research, 63(12), 3145–3153.

    PubMed  CAS  Google Scholar 

  90. Posokhova, E., Shukla, A., Seaman, S., Volate, S., Hilton, M. B., Wu, B., et al. (2015). GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Reports, 10(2), 123–130. https://doi.org/10.1016/j.celrep.2014.12.020.

    Article  PubMed  CAS  Google Scholar 

  91. Chang, J., Mancuso, M. R., Maier, C., Liang, X., Yuki, K., Yang, L., et al. (2017). Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nature Medicine, 23(4), 450–460. https://doi.org/10.1038/nm.4309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Cho, C., Smallwood, P. M., & Nathans, J. (2017). Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron, 95(5), 1056–1073.e5. https://doi.org/10.1016/j.neuron.2017.07.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564. https://doi.org/10.1126/science.1203543.

    Article  CAS  PubMed  Google Scholar 

  94. Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T. C., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527(7579), 472–476. https://doi.org/10.1038/nature15748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., et al. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527(7579), 525–530. https://doi.org/10.1038/nature16064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Somarelli, J. A., Schaeffer, D., Marengo, M. S., Bepler, T., Rouse, D., Ware, K. E., et al. (2016). Distinct routes to metastasis: plasticity-dependent and plasticity-independent pathways. Oncogene. https://doi.org/10.1038/onc.2015.497.

  97. Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691. https://doi.org/10.1016/j.cell.2016.11.037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brabletz, T., Jung, A., Hermann, K., Günther, K., Hohenberger, W., & Kirchner, T. (1998). Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathology, Research and Practice, 194(10), 701–704. https://doi.org/10.1016/s0344-0338(98)80129-5.

    Article  PubMed  CAS  Google Scholar 

  99. Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L. A., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361. https://doi.org/10.1073/pnas.171610498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Vermeulen, L., de Sousa e Melo, F., van der Heijden, M., Cameron, K., de Jong, J. H., Borovski, T., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12(5), 468–476. https://doi.org/10.1038/ncb2048.

    Article  PubMed  CAS  Google Scholar 

  101. Maruyama, K., Ochiai, A., Akimoto, S., Nakamura, S., Baba, S., Moriya, Y., & Hirohashi, S. (2000). Cytoplasmic beta-catenin accumulation as a predictor of hematogenous metastasis in human colorectal cancer. Oncology, 59(4), 302–309. https://doi.org/10.1159/000012187.

    Article  PubMed  CAS  Google Scholar 

  102. Hörkkö, T. T., Klintrup, K., Mäkinen, J. M., Näpänkangas, J. B., Tuominen, H. J., Mäkelä, J., et al. (2006). Budding invasive margin and prognosis in colorectal cancer--no direct association with beta-catenin expression. European Journal of Cancer, 42(7), 964–971. https://doi.org/10.1016/j.ejca.2006.01.017.

    Article  PubMed  CAS  Google Scholar 

  103. Horst, D., Reu, S., Kriegl, L., Engel, J., Kirchner, T., & Jung, A. (2009). The intratumoral distribution of nuclear beta-catenin is a prognostic marker in colon cancer. Cancer, 115(10), 2063–2070. https://doi.org/10.1002/cncr.24254.

    Article  PubMed  Google Scholar 

  104. Gao, Z.-H., Lu, C., Wang, M.-X., Han, Y., & Guo, L.-J. (2014). Differential β-catenin expression levels are associated with morphological features and prognosis of colorectal cancer. Oncology Letters, 8(5), 2069–2076. https://doi.org/10.3892/ol.2014.2433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu, L., Zhu, X.-D., Wang, W.-Q., Shen, Y., Qin, Y., Ren, Z.-G., et al. (2010). Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16(10), 2740–2750. https://doi.org/10.1158/1078-0432.CCR-09-2610.

    Article  CAS  Google Scholar 

  106. Yook, J. I., Li, X.-Y., Ota, I., Fearon, E. R., & Weiss, S. J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. The Journal of Biological Chemistry, 280(12), 11740–11748. https://doi.org/10.1074/jbc.M413878200.

    Article  PubMed  CAS  Google Scholar 

  107. Esposito, M., Mondal, N., Greco, T. M., Wei, Y., Spadazzi, C., Lin, S.-C., et al. (2019). Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature Cell Biology, 21(5), 627–639. https://doi.org/10.1038/s41556-019-0309-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Nandana, S., Tripathi, M., Duan, P., Chu, C.-Y., Mishra, R., Liu, C., et al. (2017). Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Research, 77(6), 1331–1344. https://doi.org/10.1158/0008-5472.CAN-16-0497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Nguyen, D. X., Chiang, A. C., Zhang, X. H.-F., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62. https://doi.org/10.1016/j.cell.2009.04.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Han, F., Liu, W.-B., Shi, X.-Y., Yang, J.-T., Zhang, X., Li, Z.-M., et al. (2018). SOX30 inhibits tumor metastasis through attenuating Wnt-signaling via transcriptional and posttranslational regulation of β-catenin in lung cancer. EBioMedicine, 31, 253–266. https://doi.org/10.1016/j.ebiom.2018.04.026.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cai, J., Fang, L., Huang, Y., Li, R., Xu, X., Hu, Z., et al. (2017). Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC. Nature Communications, 8(1), 15870–15819. https://doi.org/10.1038/ncomms15870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dai, F.-Q., Li, C.-R., Fan, X.-Q., Tan, L., Wang, R.-T., & Jin, H. (2019). miR-150-5p inhibits non-small-cell lung cancer metastasis and recurrence by targeting HMGA2 and β-catenin signaling. Molecular Therapy--Nucleic Acids, 16, 675–685. https://doi.org/10.1016/j.omtn.2019.04.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wellenstein, M. D., Coffelt, S. B., Duits, D. E. M., van Miltenburg, M. H., Slagter, M., de Rink, I., et al. (2019). Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature, 15, e493. https://doi.org/10.1038/s41586-019-1450-6.

    Article  CAS  Google Scholar 

  114. Tenbaum, S. P., Ordóñez-Morán, P., Puig, I., Chicote, I., Arqués, O., Landolfi, S., et al. (2012). β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nature Medicine, 18(6), 892–901. https://doi.org/10.1038/nm.2772.

    Article  PubMed  CAS  Google Scholar 

  115. Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151(7), 1542–1556. https://doi.org/10.1016/j.cell.2012.11.024.

    Article  PubMed  CAS  Google Scholar 

  116. Yu, M., Ting, D. T., Stott, S. L., Wittner, B. S., Ozsolak, F., Paul, S., et al. (2012). RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature, 487(7408), 510–513. https://doi.org/10.1038/nature11217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Miyamoto, D. T., Zheng, Y., Wittner, B. S., Lee, R. J., Zhu, H., Broderick, K. T., et al. (2015). RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 349(6254), 1351–1356. https://doi.org/10.1126/science.aab0917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Li, F., Tiede, B., Massagué, J., & Kang, Y. (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 17(1), 3–14. https://doi.org/10.1038/sj.cr.7310118.

    Article  PubMed  CAS  Google Scholar 

  119. Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M., & Taichman, R. S. (2013). Cancer stem cells and their role in metastasis. Pharmacology & Therapeutics, 138(2), 285–293. https://doi.org/10.1016/j.pharmthera.2013.01.014.

    Article  CAS  Google Scholar 

  120. Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Tian Ng, A. W., Wu, Y., et al. (2020). The repertoire of mutational signatures in human cancer. Nature, 578(7793), 94–101. https://doi.org/10.1038/s41586-020-1943-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rusan, N. M., & Peifer, M. (2008). Original CIN: reviewing roles for APC in chromosome instability. The Journal of Cell Biology, 181(5), 719–726. https://doi.org/10.1083/jcb.200802107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Näthke, I. S. (2004). The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annual Review of Cell and Developmental Biology, 20(1), 337–366. https://doi.org/10.1146/annurev.cellbio.20.012103.094541.

    Article  PubMed  CAS  Google Scholar 

  123. Munemitsu, S., Souza, B., Müller, O., Albert, I., Rubinfeld, B., & Polakis, P. (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research, 54(14), 3676–3681.

    PubMed  CAS  Google Scholar 

  124. Smith, K. J., Levy, D. B., Maupin, P., Pollard, T. D., Vogelstein, B., & Kinzler, K. W. (1994). Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Research, 54(14), 3672–3675.

    PubMed  CAS  Google Scholar 

  125. Zumbrunn, J., Kinoshita, K., Hyman, A. A., & Näthke, I. S. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Current Biology: CB, 11(1), 44–49. https://doi.org/10.1016/s0960-9822(01)00002-1.

    Article  PubMed  CAS  Google Scholar 

  126. Fodde, R., Kuipers, J., Rosenberg, C., Smits, R., Kielman, M., Gaspar, C., et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biology, 3(4), 433–438. https://doi.org/10.1038/35070129.

    Article  PubMed  CAS  Google Scholar 

  127. Banks, J. D., & Heald, R. (2004). Adenomatous polyposis coli associates with the microtubule-destabilizing protein XMCAK. Current Biology: CB, 14(22), 2033–2038. https://doi.org/10.1016/j.cub.2004.10.049.

    Article  PubMed  CAS  Google Scholar 

  128. Tighe, A., Johnson, V. L., & Taylor, S. S. (2004). Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. Journal of Cell Science, 117(Pt 26), 6339–6353. https://doi.org/10.1242/jcs.01556.

    Article  PubMed  CAS  Google Scholar 

  129. Draviam, V. M., Shapiro, I., Aldridge, B., & Sorger, P. K. (2006). Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. The EMBO Journal, 25(12), 2814–2827. https://doi.org/10.1038/sj.emboj.7601168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hadjihannas, M. V., Brückner, M., Jerchow, B., Birchmeier, W., Dietmaier, W., & Behrens, J. (2006). Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 10747–10752. https://doi.org/10.1073/pnas.0604206103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hadjihannas, M. V., Brückner, M., & Behrens, J. (2010). Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Reports, 11(4), 317–324. https://doi.org/10.1038/embor.2010.23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Fumoto, K., Kadono, M., Izumi, N., & Kikuchi, A. (2009). Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO Reports, 10(6), 606–613. https://doi.org/10.1038/embor.2009.45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Caldwell, C. M., Green, R. A., & Kaplan, K. B. (2007). APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. The Journal of Cell Biology, 178(7), 1109–1120. https://doi.org/10.1083/jcb.200703186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Aoki, K., Aoki, M., Sugai, M., Harada, N., Miyoshi, H., Tsukamoto, T., et al. (2007). Chromosomal instability by beta-catenin/TCF transcription in APC or beta-catenin mutant cells. Oncogene, 26(24), 3511–3520. https://doi.org/10.1038/sj.onc.1210141.

    Article  PubMed  CAS  Google Scholar 

  135. Voloshanenko, O., Erdmann, G., Dubash, T. D., Augustin, I., Metzig, M., Moffa, G., et al. (2013). Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 4(1), 2610. https://doi.org/10.1038/ncomms3610.

    Article  PubMed  CAS  Google Scholar 

  136. Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084.

    Article  PubMed  CAS  Google Scholar 

  137. Tichy, E. D., Pillai, R., Deng, L., Tischfield, J. A., Hexley, P., Babcock, G. F., & Stambrook, P. J. (2012). The abundance of Rad51 protein in mouse embryonic stem cells is regulated at multiple levels. Stem Cell Research, 9(2), 124–134. https://doi.org/10.1016/j.scr.2012.05.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. https://doi.org/10.1038/nature05236.

    Article  PubMed  CAS  Google Scholar 

  139. Gibson, B. A., & Kraus, W. L. (2012). New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Reviews. Molecular Cell Biology, 13(7), 411–424. https://doi.org/10.1038/nrm3376.

    Article  PubMed  CAS  Google Scholar 

  140. Eustermann, S., Videler, H., Yang, J.-C., Cole, P. T., Gruszka, D., Veprintsev, D., & Neuhaus, D. (2011). The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. Journal of Molecular Biology, 407(1), 149–170. https://doi.org/10.1016/j.jmb.2011.01.034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Armstrong, A. C., & Clay, V. (2019). Olaparib in germline-mutated metastatic breast cancer: implications of the OlympiAD trial. Future Oncology (London, England), 15(20), 2327–2335. https://doi.org/10.2217/fon-2018-0067.

    Article  CAS  Google Scholar 

  142. Gelmon, K. A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., Tonkin, K., et al. (2011). Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. The Lancet Oncology, 12(9), 852–861. https://doi.org/10.1016/S1470-2045(11)70214-5.

    Article  PubMed  CAS  Google Scholar 

  143. Yamamoto, T. M., McMellen, A., Watson, Z. L., Aguilera, J., Ferguson, R., Nurmemmedov, E., et al. (2019). Activation of Wnt signaling promotes olaparib resistant ovarian cancer. Molecular Carcinogenesis, 68, 7. https://doi.org/10.1002/mc.23064.

    Article  CAS  Google Scholar 

  144. Thorne, C. A., Hanson, A. J., Schneider, J., Tahinci, E., Orton, D., Cselenyi, C. S., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nature Chemical Biology, 6(11), 829–836. https://doi.org/10.1038/nchembio.453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Li, B., Fei, D. L., Flaveny, C. A., Dahmane, N., Baubet, V., Wang, Z., et al. (2014). Pyrvinium attenuates Hedgehog signaling downstream of smoothened. Cancer Research, 74(17), 4811–4821. https://doi.org/10.1158/0008-5472.CAN-14-0317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Jun, S., Jung, Y.-S., Suh, H. N., Wang, W., Kim, M. J., Oh, Y. S., et al. (2016). LIG4 mediates Wnt signalling-induced radioresistance. Nature Communications, 7(1), 10994–10913. https://doi.org/10.1038/ncomms10994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kanazawa, A., Tsukada, S., Sekine, A., Tsunoda, T., Takahashi, A., Kashiwagi, A., et al. (2004). Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. American Journal of Human Genetics, 75(5), 832–843. https://doi.org/10.1086/425340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Zeve, D., Seo, J., Suh, J. M., Stenesen, D., Tang, W., Berglund, E. D., et al. (2012). Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metabolism, 15(4), 492–504. https://doi.org/10.1016/j.cmet.2012.03.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mori, H., Prestwich, T. C., Reid, M. A., Longo, K. A., Gerin, I., Cawthorn, W. P., et al. (2012). Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. The Journal of Clinical Investigation, 122(7), 2405–2416. https://doi.org/10.1172/JCI63604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Behari, J., Li, H., Liu, S., Stefanovic-Racic, M., Alonso, L., O'Donnell, C. P., et al. (2014). β-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. The American Journal of Pathology, 184(12), 3284–3298. https://doi.org/10.1016/j.ajpath.2014.08.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Sethi, J. K., & Vidal-Puig, A. (2010). Wnt signalling and the control of cellular metabolism. The Biochemical Journal, 427(1), 1–17. https://doi.org/10.1042/BJ20091866.

    Article  PubMed  CAS  Google Scholar 

  152. Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sherwood, V. (2015). WNT signaling: an emerging mediator of cancer cell metabolism? Molecular and Cellular Biology, 35(1), 2–10. https://doi.org/10.1128/MCB.00992-14.

    Article  PubMed  CAS  Google Scholar 

  154. Chafey, P., Finzi, L., Boisgard, R., Caüzac, M., Clary, G., Broussard, C., et al. (2009). Proteomic analysis of beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics, 9(15), 3889–3900. https://doi.org/10.1002/pmic.200800609.

    Article  PubMed  CAS  Google Scholar 

  155. Pate, K. T., Stringari, C., Sprowl-Tanio, S., Wang, K., TeSlaa, T., Hoverter, N. P., et al. (2014). Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. The EMBO Journal, 33(13), 1454–1473. https://doi.org/10.15252/embj.201488598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., et al. (2012). Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Research, 72(14), 3607–3617. https://doi.org/10.1158/0008-5472.CAN-12-0006.

    Article  PubMed  CAS  Google Scholar 

  157. Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(21), 6479–6483. https://doi.org/10.1158/1078-0432.CCR-09-0889.

    Article  CAS  Google Scholar 

  158. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Crusz, S. M., & Balkwill, F. R. (2015). Inflammation and cancer: advances and new agents. Nature Reviews. Clinical Oncology, 12(10), 584–596. https://doi.org/10.1038/nrclinonc.2015.105.

    Article  PubMed  CAS  Google Scholar 

  160. Yeo, E.-J., Cassetta, L., Qian, B.-Z., Lewkowich, I., Li, J.-F., Stefater, J. A., et al. (2014). Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Research, 74(11), 2962–2973. https://doi.org/10.1158/0008-5472.CAN-13-2421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. The Journal of Immunology, 184(2), 702–712. https://doi.org/10.4049/jimmunol.0902360.

    Article  PubMed  CAS  Google Scholar 

  162. Oguma, K., Oshima, H., Aoki, M., Uchio, R., Naka, K., Nakamura, S., et al. (2008). Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. The EMBO Journal, 27(12), 1671–1681. https://doi.org/10.1038/emboj.2008.105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., et al. (2006). Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5454–5459. https://doi.org/10.1073/pnas.0509703103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Linde, N., Casanova-Acebes, M., Sosa, M. S., Mortha, A., Rahman, A., Farias, E., et al. (2018). Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 9(1), 21. https://doi.org/10.1038/s41467-017-02481-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Manicassamy, S., Reizis, B., Ravindran, R., Nakaya, H., Salazar-Gonzalez, R. M., Wang, Y.-C., & Pulendran, B. (2010). Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science, 329(5993), 849–853. https://doi.org/10.1126/science.1188510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Oderup, C., LaJevic, M., & Butcher, E. C. (2013). Canonical and noncanonical Wnt proteins program dendritic cell responses for tolerance. The Journal of Immunology, 190(12), 6126–6134. https://doi.org/10.4049/jimmunol.1203002.

    Article  PubMed  CAS  Google Scholar 

  167. Hong, Y., Manoharan, I., Suryawanshi, A., Shanmugam, A., Swafford, D., Ahmad, S., et al. (2016). Deletion of LRP5 and LRP6 in dendritic cells enhances antitumor immunity. Oncoimmunology, 5(4), e1115941. https://doi.org/10.1080/2162402X.2015.1115941.

    Article  PubMed  CAS  Google Scholar 

  168. Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231–235. https://doi.org/10.1038/nature14404.

    Article  PubMed  CAS  Google Scholar 

  169. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S., & Gajewski, T. F. (2019). WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, clincanres.1942.2018. https://doi.org/10.1158/1078-0432.CCR-18-1942.

  170. Holtzhausen, A., Zhao, F., Evans, K. S., Tsutsui, M., Orabona, C., Tyler, D. S., & Hanks, B. A. (2015). Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunology Research, 3(9), 1082–1095. https://doi.org/10.1158/2326-6066.CIR-14-0167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Fallarino, F., Grohmann, U., You, S., McGrath, B. C., Cavener, D. R., Vacca, C., et al. (2006). The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. The Journal of Immunology, 176(11), 6752–6761. https://doi.org/10.4049/jimmunol.176.11.6752.

    Article  PubMed  CAS  Google Scholar 

  172. Zhao, F., Xiao, C., Evans, K. S., Theivanthiran, T., DeVito, N., Holtzhausen, A., et al. (2018). Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity, 48(1), 147–160.e7. https://doi.org/10.1016/j.immuni.2017.12.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Khazaie, K., Blatner, N. R., Khan, M. W., Gounari, F., Gounaris, E., Dennis, K., et al. (2011). The significant role of mast cells in cancer. Cancer Metastasis Reviews, 30(1), 45–60. https://doi.org/10.1007/s10555-011-9286-z.

    Article  PubMed  CAS  Google Scholar 

  174. Yamaguchi, T., Nishijima, M., Tashiro, K., & Kawabata, K. (2016). Wnt-β-catenin signaling promotes the maturation of mast cells. BioMed Research International, 2016(7, article 1378), 2048987–2048988. https://doi.org/10.1155/2016/2048987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Tebroke, J., Lieverse, J. E., Säfholm, J., Schulte, G., Nilsson, G., & Rönnberg, E. (2019). Wnt-3a induces cytokine release in human mast cells. Cells, 8(11), 1372. https://doi.org/10.3390/cells8111372.

    Article  PubMed Central  CAS  Google Scholar 

  176. Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16(8), 2257–2265. https://doi.org/10.1158/1078-0432.CCR-09-1230.

    Article  CAS  Google Scholar 

  177. Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 27(28), 4709–4717. https://doi.org/10.1200/JCO.2008.18.9498.

    Article  Google Scholar 

  178. Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2011). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193. https://doi.org/10.1002/ijc.25892.

    Article  PubMed  CAS  Google Scholar 

  179. Galdiero, M. R., Bianchi, P., Grizzi, F., Di Caro, G., Basso, G., Ponzetta, A., et al. (2016). Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. International Journal of Cancer, 139(2), 446–456. https://doi.org/10.1002/ijc.30076.

    Article  PubMed  CAS  Google Scholar 

  180. Caruso, R. A., Bellocco, R., Pagano, M., Bertoli, G., Rigoli, L., & Inferrera, C. (2002). Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 15(8), 831–837. https://doi.org/10.1097/01.MP.0000020391.98998.6B.

    Article  Google Scholar 

  181. Chao, T., Furth, E. E., & Vonderheide, R. H. (2016). CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunology Research, 4(11), 968–982. https://doi.org/10.1158/2326-6066.CIR-16-0188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Skokowa, J., Cario, G., Uenalan, M., Schambach, A., Germeshausen, M., Battmer, K., et al. (2006). LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nature Medicine, 12(10), 1191–1197. https://doi.org/10.1038/nm1474.

    Article  PubMed  CAS  Google Scholar 

  183. Verbeek, S., Izon, D., Hofhuis, F., Robanus-Maandag, E., te Riele, H., van de Wetering, M., et al. (1995). An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature, 374(6517), 70–74. https://doi.org/10.1038/374070a0.

    Article  PubMed  CAS  Google Scholar 

  184. Staal, F. J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B. C., Vainio, S., et al. (2001). Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 31(1), 285–293. https://doi.org/10.1002/1521-4141(200101)31:1<285::AID-IMMU285>3.0.CO;2-D.

    Article  PubMed  CAS  Google Scholar 

  185. Wang, B., Tian, T., Kalland, K.-H., Ke, X., & Qu, Y. (2018). Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends in Pharmacological Sciences, 39(7), 648–658. https://doi.org/10.1016/j.tips.2018.03.008.

    Article  PubMed  CAS  Google Scholar 

  186. Wong, C., Chen, C., Wu, Q., Liu, Y., & Zheng, P. (2015). A critical role for the regulated wnt-myc pathway in naive T cell survival. The Journal of Immunology, 194(1), 158–167. https://doi.org/10.4049/jimmunol.1401238.

    Article  PubMed  CAS  Google Scholar 

  187. Yu, Q., Sharma, A., Oh, S. Y., Moon, H.-G., Hossain, M. Z., Salay, T. M., et al. (2009). T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nature Immunology, 10(9), 992–999. https://doi.org/10.1038/ni.1762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Notani, D., Gottimukkala, K. P., Jayani, R. S., Limaye, A. S., Damle, M. V., Mehta, S., et al. (2010). Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biology, 8(1), e1000296. https://doi.org/10.1371/journal.pbio.1000296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Dai, W., Liu, F., Li, C., Lu, Y., Lu, X., Du, S., et al. (2016). Blockade of Wnt/β-catenin pathway aggravated silica-induced lung inflammation through Tregs regulation on Th immune responses. Mediators of Inflammation, 2016(6), 6235614–6235614. https://doi.org/10.1155/2016/6235614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Ding, Y., Shen, S., Lino, A. C., Curotto de Lafaille, M. A., & Lafaille, J. J. (2008). Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nature Medicine, 14(2), 162–169. https://doi.org/10.1038/nm1707.

    Article  PubMed  CAS  Google Scholar 

  191. Sun, X., Liu, S., Wang, D., Zhang, Y., Li, W., Guo, Y., et al. (2017). Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling. Oncotarget, 8(9), 15168–15181. https://doi.org/10.18632/oncotarget.14834.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Keerthivasan, S., Aghajani, K., Dose, M., Molinero, L., Khan, M. W., Venkateswaran, V., et al. (2014). β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Science Translational Medicine, 6(225), 225ra28–225ra28. https://doi.org/10.1126/scitranslmed.3007607.

    Article  CAS  Google Scholar 

  193. Trujillo, J. A., Sweis, R. F., Bao, R., & Luke, J. J. (2018). T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunology Research, 6(9), 990–1000. https://doi.org/10.1158/2326-6066.CIR-18-0277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Spranger, S., & Gajewski, T. F. (2018). Impact of oncogenic pathways on evasion of antitumour immune responses. Nature Reviews. Cancer, 18(3), 139–147. https://doi.org/10.1038/nrc.2017.117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Sweis, R. F., Spranger, S., Bao, R., Paner, G. P., Stadler, W. M., Steinberg, G., & Gajewski, T. F. (2016). Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunology Research, 4(7), 563–568. https://doi.org/10.1158/2326-6066.CIR-15-0274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Murata, Y., Saito, Y., Kotani, T., & Matozaki, T. (2018). CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Science, 109(8), 2349–2357. https://doi.org/10.1111/cas.13663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Gowda, P., Patrick, S., Singh, A., Sheikh, T., & Sen, E. (2018). Mutant isocitrate dehydrogenase 1 disrupts PKM2-β-catenin-BRG1 transcriptional network-driven CD47 expression. Molecular and Cellular Biology, 38(9), 597. https://doi.org/10.1128/MCB.00001-18.

    Article  Google Scholar 

  198. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology, 39(1), 98–106. https://doi.org/10.1097/COC.0000000000000239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Hui, E., Cheung, J., Zhu, J., Su, X., Taylor, M. J., Wallweber, H. A., et al. (2017). T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 355(6332), 1428–1433. https://doi.org/10.1126/science.aaf1292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M., & Saito, T. (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. The Journal of Experimental Medicine, 209(6), 1201–1217. https://doi.org/10.1084/jem.20112741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Chovanec, M., Cierna, Z., Miskovska, V., Machalekova, K., Kalavska, K., Rejlekova, K., et al. (2018). βcatenin is a marker of poor clinical characteristics and suppressed immune infiltration in testicular germ cell tumors. BMC Cancer, 18(1), 1062–1010. https://doi.org/10.1186/s12885-018-4929-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Castagnoli, L., Cancila, V., Cordoba-Romero, S. L., Faraci, S., Talarico, G., Belmonte, B., et al. (2019). WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene, 38(21), 4047–4060. https://doi.org/10.1038/s41388-019-0700-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Casey, S. C., Tong, L., Li, Y., Do, R., Walz, S., Fitzgerald, K. N., et al. (2016). MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 352(6282), 227–231. https://doi.org/10.1126/science.aac9935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Kalbasi, A., & Ribas, A. (2020). Tumour-intrinsic resistance to immune checkpoint blockade. Nature Reviews. Immunology, 20(1), 25–39. https://doi.org/10.1038/s41577-019-0218-4.

    Article  PubMed  CAS  Google Scholar 

  205. Rotte, A. (2019). Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of Experimental and Clinical Cancer Research, 38(1), 255–212. https://doi.org/10.1186/s13046-019-1259-z.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Shah, K. V., Chien, A. J., Yee, C., & Moon, R. T. (2008). CTLA-4 is a direct target of Wnt/beta-catenin signaling and is expressed in human melanoma tumors. The Journal of Investigative Dermatology, 128(12), 2870–2879. https://doi.org/10.1038/jid.2008.170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Blando, J., Sharma, A., Higa, M. G., Zhao, H., Vence, L., Yadav, S. S., et al. (2019). Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1692–1697. https://doi.org/10.1073/pnas.1811067116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Guo, Y., Xiao, L., Sun, L., & Liu, F. (2012). Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiological Research, 61(4), 337–346.

    Article  CAS  PubMed  Google Scholar 

  209. Madan, B., Patel, M. B., Zhang, J., Bunte, R. M., Rudemiller, N. P., Griffiths, R., et al. (2016). Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney International. https://doi.org/10.1016/j.kint.2016.01.017.

  210. Madan, B., & Virshup, D. M. (2015). Targeting Wnts at the source--new mechanisms, new biomarkers, new drugs. Molecular Cancer Therapeutics, 14(5), 1087–1094. https://doi.org/10.1158/1535-7163.MCT-14-1038.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Nakeisha Tan for the illustrations.

Funding

The authors received support from the Singapore Ministry of Health’s National Medical Research Council Open Fund–Independent Research grant NMRC/OFIRG/0055/2017 (to Babita Madan) and the STAR Award Program MOH-000155 (to David Virshup).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David M. Virshup or Babita Madan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Yu, J., Virshup, D.M. et al. Wnts and the hallmarks of cancer. Cancer Metastasis Rev 39, 625–645 (2020). https://doi.org/10.1007/s10555-020-09887-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09887-6

Keywords

Navigation