Skip to main content

Advertisement

Log in

Association of chromosome 19 to lung cancer genotypes and phenotypes

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2015

Abstract

The Chromosome 19 Consortium, a part of the Chromosome-Centric Human Proteome Project (C-HPP, http://www.C-HPP.org), is tasked with the understanding chromosome 19 functions at the gene and protein levels, as well as their roles in lung oncogenesis. Comparative genomic hybridization (CGH) studies revealed chromosome aberration in lung cancer subtypes, including ADC, SCC, LCC, and SCLC. The most common abnormality is 19p loss and 19q gain. Sixty-four aberrant genes identified in previous genomic studies and their encoded protein functions were further validated in the neXtProt database (http://www.nextprot.org/). Among those, the loss of tumor suppressor genes STK11, MUM1, KISS1R (19p13.3), and BRG1 (19p13.13) is associated with lung oncogenesis or remote metastasis. Gene aberrations include translocation t(15, 19) (q13, p13.1) fusion oncogene BRD4-NUT, DNA repair genes (ERCC1, ERCC2, XRCC1), TGFβ1 pathway activation genes (TGFB1, LTBP4), Dyrk1B, and potential oncogenesis protector genes such as NFkB pathway inhibition genes (NFKBIB, PPP1R13L) and EGLN2. In conclusion, neXtProt is an effective resource for the validation of gene aberrations identified in genomic studies. It promises to enhance our understanding of lung cancer oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. doi:10.3322/caac.21262.

    Google Scholar 

  2. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10–29. doi:10.3322/caac.20138.

    Google Scholar 

  3. Allemani, C., Weir, H. K., Carreira, H., Harewood, R., Spika, D., Wang, X. S., et al. (2014). Global surveillance of cancer survival 1995-2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. doi:10.1016/S0140-6736(14)62038-9.

    PubMed  Google Scholar 

  4. Bronte, G., Rizzo, S., La Paglia, L., Adamo, V., Siragusa, S., Ficorella, C., et al. (2010). Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treatment Reviews, 36(Suppl 3), S21–S29. doi:10.1016/S0305-7372(10)70016-5.

    Article  CAS  PubMed  Google Scholar 

  5. Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi:10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  6. Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., Beretta, L., et al. (2011). The human proteome project: current state and future direction. Molecular and Cellular Proteomics, 10(7), M111 009993. doi:10.1074/mcp.M111.009993.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hancock, W., Omenn, G., Legrain, P., & Paik, Y. K. (2011). Proteomics, human proteome project, and chromosomes. Journal of Proteome Research, 10(1), 210. doi:10.1021/pr101099h.

    Article  CAS  PubMed  Google Scholar 

  8. Paik, Y. K., Jeong, S. K., Omenn, G. S., Uhlen, M., Hanash, S., Cho, S. Y., et al. (2012). The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nature Biotechnology, 30(3), 221–223. doi:10.1038/nbt.2152.

    Article  CAS  PubMed  Google Scholar 

  9. Uhlen, M., Oksvold, P., Algenas, C., Hamsten, C., Fagerberg, L., Klevebring, D., et al. (2012). Antibody-based protein profiling of the human chromosome 21. Molecular and Cellular Proteomics, 11(3), M111 013458. doi:10.1074/mcp.M111.013458.

    Article  PubMed Central  PubMed  Google Scholar 

  10. A gene-centric human proteome project, HUPO–the Human Proteome organization. (2010). Molecular and Cellular Proteomics, 9(2), 427–429. doi:10.1074/mcp.H900001-MCP200.

    Article  Google Scholar 

  11. Nilsson, C. L., Berven, F., Selheim, F., Liu, H., Moskal, J. R., Kroes, R. A., et al. (2013). Chromosome 19 annotations with disease speciation: a first report from the Global Research Consortium. Journal of Proteome Research, 12(1), 135–150. doi:10.1021/pr3008607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lichti, C. F., Liu, H., Shavkunov, A. S., Mostovenko, E., Sulman, E. P., Ezhilarasan, R., et al. (2014). Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines. Journal of Proteome Research, 13(1), 191–199. doi:10.1021/pr400786s.

    Article  CAS  PubMed  Google Scholar 

  13. Lichti, C. F., Mostovenko, E., Wadsworth, P. A., Lynch, G. C., Pettitt, B. M., Sulman, E. P., et al. (2015). Systematic identification of single amino Acid variants in glioma stem-cell-derived chromosome 19 proteins. Journal of Proteome Research, 14(2), 778–786. doi:10.1021/pr500810g.

    Article  CAS  PubMed  Google Scholar 

  14. Grimwood, J., Gordon, L. A., Olsen, A., Terry, A., Schmutz, J., Lamerdin, J., et al. (2004). The DNA sequence and biology of human chromosome 19. Nature, 428(6982), 529–535. doi:10.1038/nature02399.

    Article  CAS  PubMed  Google Scholar 

  15. Marko-Varga, G., Lindberg, H., Lofdahl, C. G., Jonsson, P., Hansson, L., Dahlback, M., et al. (2005). Discovery of biomarker candidates within disease by protein profiling: principles and concepts. Journal of Proteome Research, 4(4), 1200–1212. doi:10.1021/pr050122w.

    Article  CAS  PubMed  Google Scholar 

  16. Yen, C. C., Liang, S. C., Jong, Y. J., Chen, Y. J., Lin, C. H., Chen, Y. M., et al. (2007). Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer, 57(3), 292–301. doi:10.1016/j.lungcan.2007.04.007.

    Article  PubMed  Google Scholar 

  17. Choi, J. S., Zheng, L. T., Ha, E., Lim, Y. J., Kim, Y. H., Wang, Y. P., et al. (2006). Comparative genomic hybridization array analysis and real-time PCR reveals genomic copy number alteration for lung adenocarcinomas. Lung, 184(6), 355–362. doi:10.1007/s00408-006-0009-0.

    Article  CAS  PubMed  Google Scholar 

  18. Broet, P., Dalmasso, C., Tan, E. H., Alifano, M., Zhang, S., Wu, J., et al. (2011). Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clinical Cancer Research, 17(11), 3542–3550. doi:10.1158/1078-0432.CCR-10-2185.

    Article  CAS  PubMed  Google Scholar 

  19. Wong, M. P., Lam, W. K., Wang, E., Chiu, S. W., Lam, C. L., & Chung, L. P. (2002). Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance. Cancer Research, 62(15), 4464–4468.

    CAS  PubMed  Google Scholar 

  20. Shen, H., Zhu, Y., Wu, Y. J., Qiu, H. R., & Shu, Y. Q. (2008). Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Cancer Genetics and Cytogenetics, 181(2), 100–107. doi:10.1016/j.cancergencyto.2007.11.012.

    Article  CAS  PubMed  Google Scholar 

  21. Choi, Y. W., Choi, J. S., Zheng, L. T., Lim, Y. J., Yoon, H. K., Kim, Y. H., et al. (2007). Comparative genomic hybridization array analysis and real time PCR reveals genomic alterations in squamous cell carcinomas of the lung. Lung Cancer, 55(1), 43–51. doi:10.1016/j.lungcan.2006.09.018.

    Article  PubMed  Google Scholar 

  22. Boelens, M. C., Kok, K., van der Vlies, P., van der Vries, G., Sietsma, H., Timens, W., et al. (2009). Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis. Lung Cancer, 66(3), 372–378. doi:10.1016/j.lungcan.2009.02.017.

    Article  PubMed  Google Scholar 

  23. Kayser, K., Kosjerina, Z., Goldmann, T., Kayser, G., Kazmierczak, B., & Vollmer, E. (2005). Lung carcinoma-associated atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa. Lung Cancer, 47(2), 205–214. doi:10.1016/j.lungcan.2004.07.042.

    Article  PubMed  Google Scholar 

  24. Umemura, S., Mimaki, S., Makinoshima, H., Tada, S., Ishii, G., Ohmatsu, H., et al. (2014). Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. Journal of Thoracic Oncology, 9(9), 1324–1331. doi:10.1097/JTO.0000000000000250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vogel, U., Laros, I., Jacobsen, N. R., Thomsen, B. L., Bak, H., Olsen, A., et al. (2004). Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer. Mutation Research, 546(1-2), 65–74.

    Article  CAS  PubMed  Google Scholar 

  26. Yin, J., Vogel, U., Ma, Y., Qi, R., & Wang, H. (2008). Haplotypes of nine single nucleotide polymorphisms on chromosome 19q13.2-3 associated with susceptibility of lung cancer in a Chinese population. Mutation Research, 641(1-2), 12–18. doi:10.1016/j.mrfmmm.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  27. Bloom, A. J., Baker, T. B., Chen, L. S., Breslau, N., Hatsukami, D., Bierut, L. J., et al. (2014). Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Human Molecular Genetics, 23(2), 555–561. doi:10.1093/hmg/ddt432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ryan, D. M., Vincent, T. L., Salit, J., Walters, M. S., Agosto-Perez, F., Shaykhiev, R., et al. (2014). Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One, 9(2), e88051. doi:10.1371/journal.pone.0088051.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Li, Y., Huang, J., & Amos, C. I. (2012). Genetic association analysis of complex diseases incorporating intermediate phenotype information. PLoS One, 7(10), e46612. doi:10.1371/journal.pone.0046612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yin, J., Vogel, U., Wang, H., Ma, Y., Wang, C., Liang, D., et al. (2013). HapMap-based study identifies risk sub-region on chromosome 19q13.3 in relation to lung cancer among Chinese. Cancer Epidemiology, 37(6), 923–929. doi:10.1016/j.canep.2013.09.016.

    Article  PubMed  Google Scholar 

  31. Timofeeva, M. N., McKay, J. D., Smith, G. D., Johansson, M., Byrnes, G. B., Chabrier, A., et al. (2011). Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiology, Biomarkers and Prevention, 20(10), 2250–2261. doi:10.1158/1055-9965.EPI-11-0496.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez-Cespedes, M., Ahrendt, S. A., Piantadosi, S., Rosell, R., Monzo, M., Wu, L., et al. (2001). Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Research, 61(4), 1309–1313.

    CAS  PubMed  Google Scholar 

  33. Yin, J., Guo, L., Wang, C., Wang, H., Ma, Y., Liu, J., et al. (2013). Effects of PPP1R13L and CD3EAP variants on lung cancer susceptibility among nonsmoking Chinese women. Gene, 524(2), 228–231. doi:10.1016/j.gene.2013.04.017.

    Article  CAS  PubMed  Google Scholar 

  34. Ruosaari, S. T., Nymark, P. E., Aavikko, M. M., Kettunen, E., Knuutila, S., Hollmen, J., et al. (2008). Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 29(5), 913–917. doi:10.1093/carcin/bgn068.

    Article  CAS  PubMed  Google Scholar 

  35. Wikman, H., Ruosaari, S., Nymark, P., Sarhadi, V. K., Saharinen, J., Vanhala, E., et al. (2007). Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene, 26(32), 4730–4737. doi:10.1038/sj.onc.1210270.

    Article  CAS  PubMed  Google Scholar 

  36. Nymark, P., Aavikko, M., Makila, J., Ruosaari, S., Hienonen-Kempas, T., Wikman, H., et al. (2013). Accumulation of genomic alterations in 2p16, 9q33.1 and 19p13 in lung tumours of asbestos-exposed patients. Molecular Oncology, 7(1), 29–40. doi:10.1016/j.molonc.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  37. Hu, Y., Gao, Y. N., Feng, F. Y., Lin, D. M., & Jiao, S. C. (2010). Analysis of first-line chemoresistance and prediction of chemo-response in non-small cell lung cancer by comparative genomic hybridization. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 32(4), 389–393. doi:10.3881/j.issn.1000-503X.2010.04.006.

    CAS  PubMed  Google Scholar 

  38. Felip, E., & Rosell, R. (2007). Testing for excision repair cross-complementing 1 in patients with non-small-cell lung cancer for chemotherapy response. Expert Review of Molecular Diagnostics, 7(3), 261–268. doi:10.1586/14737159.7.3.261.

    Article  CAS  PubMed  Google Scholar 

  39. Carpagnano, G. E., Palladino, G. P., Gramiccioni, C., Foschino Barbaro, M. P., & Martinelli, D. (2010). Exhaled ERCC-1 and ERCC-2 microsatellite alterations in NSCLC patients. Lung Cancer, 68(2), 305–307. doi:10.1016/j.lungcan.2010.01.020.

    Article  PubMed  Google Scholar 

  40. Rydzanicz, M., Giefing, M., Ziolkowski, A., Kasprzyk, M., Gabriel, A., Dyszkiewicz, W., et al. (2008). Nonrandom DNA copy number changes related to lymph node metastases in squamous cell carcinoma of the lung. Neoplasma, 55(6), 493–500.

    CAS  PubMed  Google Scholar 

  41. Goode, R. J., Yu, S., Kannan, A., Christiansen, J. H., Beitz, A., Hancock, W. S., et al. (2013). The proteome browser web portal. Journal of Proteome Research, 12(1), 172–178. doi:10.1021/pr3010056.

    Article  CAS  PubMed  Google Scholar 

  42. Gazdar, A. F., Bader, S., Hung, J., Kishimoto, Y., Sekido, Y., Sugio, K., et al. (1994). Molecular genetic changes found in human lung cancer and its precursor lesions. Cold Spring Harbor Symposia on Quantitative Biology, 59, 565–572.

    Article  CAS  PubMed  Google Scholar 

  43. von Herbay, A., Arens, N., Friedl, W., Vogt-Moykopf, I., Kayser, K., Muller, K. M., et al. (2005). Bronchioloalveolar carcinoma: a new cancer in Peutz-Jeghers syndrome. Lung Cancer, 47(2), 283–288. doi:10.1016/j.lungcan.2004.06.015.

    Article  Google Scholar 

  44. Gill, R. K., Yang, S. H., Meerzaman, D., Mechanic, L. E., Bowman, E. D., Jeon, H. S., et al. (2011). Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene, 30(35), 3784–3791. doi:10.1038/onc.2011.98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Shaw, R. J. (2009). LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiologica (Oxford, England), 196(1), 65–80. doi:10.1111/j.1748-1716.2009.01972.x.

    Article  CAS  Google Scholar 

  46. Sanchez-Cespedes, M. (2011). The role of LKB1 in lung cancer. Familial Cancer, 10(3), 447–453. doi:10.1007/s10689-011-9443-0.

    Article  CAS  PubMed  Google Scholar 

  47. Shaw, R. J. (2009). Tumor suppression by LKB1: SIK-ness prevents metastasis. Science Signaling, 2(86), pe55. doi:10.1126/scisignal.286pe55.

    Article  PubMed  Google Scholar 

  48. Rodriguez-Nieto, S., & Sanchez-Cespedes, M. (2009). BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis, 30(4), 547–554. doi:10.1093/carcin/bgp035.

    Article  CAS  PubMed  Google Scholar 

  49. Orvis, T., Hepperla, A., Walter, V., Song, S., Simon, J., Parker, J., et al. (2014). BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Research, 74(22), 6486–6498. doi:10.1158/0008-5472.CAN-14-0061.

    Article  CAS  PubMed  Google Scholar 

  50. Huen, M. S., Huang, J., Leung, J. W., Sy, S. M., Leung, K. M., Ching, Y. P., et al. (2010). Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Molecular Cell, 37(6), 854–864. doi:10.1016/j.molcel.2009.12.040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sun, Y. B., & Xu, S. (2013). Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. International Journal of Oncology, 43(2), 521–530. doi:10.3892/ijo.2013.1967.

    CAS  PubMed  Google Scholar 

  52. Vargas, S. O., French, C. A., Faul, P. N., Fletcher, J. A., Davis, I. J., Dal Cin, P., et al. (2001). Upper respiratory tract carcinoma with chromosomal translocation 15;19: evidence for a distinct disease entity of young patients with a rapidly fatal course. Cancer, 92(5), 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  53. French, C. A., Miyoshi, I., Kubonishi, I., Grier, H. E., Perez-Atayde, A. R., & Fletcher, J. A. (2003). BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Research, 63(2), 304–307.

    CAS  PubMed  Google Scholar 

  54. Thompson-Wicking, K., Francis, R. W., Stirnweiss, A., Ferrari, E., Welch, M. D., Baker, E., et al. (2013). Novel BRD4-NUT fusion isoforms increase the pathogenic complexity in NUT midline carcinoma. Oncogene, 32(39), 4664–4674. doi:10.1038/onc.2012.487.

    Article  CAS  PubMed  Google Scholar 

  55. Haruki, N., Kawaguchi, K. S., Eichenberger, S., Massion, P. P., Gonzalez, A., Gazdar, A. F., et al. (2005). Cloned fusion product from a rare t(15;19)(q13.2;p13.1) inhibit S phase in vitro. Journal of Medical Genetics, 42(7), 558–564. doi:10.1136/jmg.2004.029686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.

    Article  CAS  PubMed  Google Scholar 

  57. Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.

    Article  CAS  PubMed  Google Scholar 

  58. Zou, Z., Huang, B., Wu, X., Zhang, H., Qi, J., Bradner, J., et al. (2014). Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene, 33(18), 2395–2404. doi:10.1038/onc.2013.179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wu, S. Y., Lee, A. Y., Lai, H. T., Zhang, H., & Chiang, C. M. (2013). Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Molecular Cell, 49(5), 843–857. doi:10.1016/j.molcel.2012.12.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Simon, G. R., Sharma, S., Cantor, A., Smith, P., & Bepler, G. (2005). ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest, 127(3), 978–983. doi:10.1378/chest.127.3.978.

    Article  PubMed  Google Scholar 

  61. Vanhecke, E., Valent, A., Tang, X., Vielh, P., Friboulet, L., Tang, T., et al. (2013). 19q13-ERCC1 gene copy number increase in non-small-cell lung cancer. Clinical Lung Cancer, 14(5), 549–557. doi:10.1016/j.cllc.2013.01.006.

    Article  CAS  PubMed  Google Scholar 

  62. Dobashi, Y., Kimura, M., Matsubara, H., Endo, S., Inazawa, J., & Ooi, A. (2012). Molecular alterations in AKT and its protein activation in human lung carcinomas. Human Pathology, 43(12), 2229–2240. doi:10.1016/j.humpath.2012.03.015.

    Article  CAS  PubMed  Google Scholar 

  63. Bokobza, S. M., Jiang, Y., Weber, A. M., Devery, A. M., & Ryan, A. J. (2014). Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget, 5(13), 4765–4778.

    PubMed Central  PubMed  Google Scholar 

  64. Koli, K., Wempe, F., Sterner-Kock, A., Kantola, A., Komor, M., Hofmann, W. K., et al. (2004). Disruption of LTBP-4 function reduces TGF-beta activation and enhances BMP-4 signaling in the lung. Journal of Cell Biology, 167(1), 123–133. doi:10.1083/jcb.200403067.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Li, H., Da, L. J., Fan, W. D., Long, X. H., & Zhang, X. Q. (2015). Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Molecular Medicine Reports, 11(5), 3259–3268. doi:10.3892/mmr.2015.3150.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kong, F. F., Zhu, Y. L., Yuan, H. H., Wang, J. Y., Zhao, M., Gong, X. D., et al. (2014). FOXM1 regulated by ERK pathway mediates TGF-beta1-Induced EMT in NSCLC. Oncology Research, 22(1), 29–37. doi:10.3727/096504014X14078436004987.

    Article  PubMed  Google Scholar 

  67. Yang, J. P., Hori, M., Sanda, T., & Okamoto, T. (1999). Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. Journal of Biological Chemistry, 274(22), 15662–15670.

    Article  CAS  PubMed  Google Scholar 

  68. Slee, E. A., Gillotin, S., Bergamaschi, D., Royer, C., Llanos, S., Ali, S., et al. (2004). The N-terminus of a novel isoform of human iASPP is required for its cytoplasmic localization. Oncogene, 23(56), 9007–9016. doi:10.1038/sj.onc.1208088.

    Article  CAS  PubMed  Google Scholar 

  69. Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Structural and Molecular Biology, 14(10), 912–920. doi:10.1038/nsmb1306.

    Article  CAS  PubMed  Google Scholar 

  70. Gao, J., Zheng, Z., Rawal, B., Schell, M. J., Bepler, G., & Haura, E. B. (2009). Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancer Biology and Therapy, 8(17), 1671–1679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gao, J., Zhao, Y., Lv, Y., Chen, Y., Wei, B., Tian, J., et al. (2013). Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell International, 13(1), 2. doi:10.1186/1475-2867-13-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Che, J., Jiang, D., Zheng, Y., Zhu, B., Zhang, P., Lu, D., et al. (2014). Polymorphism in PHD1 gene and risk of non-small cell lung cancer in a Chinese population. Tumour Biology, 35(9), 8921–8925. doi:10.1007/s13277-014-2112-9.

    Article  CAS  PubMed  Google Scholar 

  73. Xie, X., Xiao, H., Ding, F., Zhong, H., Zhu, J., Ma, N., et al. (2014). Over-expression of prolyl hydroxylase-1 blocks NF-kappaB-mediated cyclin D1 expression and proliferation in lung carcinoma cells. Cancer Genet, 207(5), 188–194. doi:10.1016/j.cancergen.2014.04.008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Zhongshan Distinguished Professor Grant (XDW), The National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, and Ministry of Education, Academic Special Science and Research Foundation for PhD Education (20130071110043). MF is supported by grant FIS14/01538 (ISCIII- Fondos FEDER EU) and Proteomics Units at CIC belongs to ProteoRed-PRB2 (PT13-001, ISCIII, Fondos FEDER-EU)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Wang or György Marko-Varga.

Additional information

Xiangdong Wang and Yong Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Nilsson, C.L. et al. Association of chromosome 19 to lung cancer genotypes and phenotypes. Cancer Metastasis Rev 34, 217–226 (2015). https://doi.org/10.1007/s10555-015-9556-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9556-2

Keywords

Navigation