Skip to main content

Advertisement

Log in

COX inhibitors directly alter gene expression: role in cancer prevention?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Inflammation is an important contributor to the development and progression of human cancers. Inflammatory lipid metabolites, prostaglandins, formed from arachidonic acid by prostaglandin H synthases commonly called cyclooxygenases (COXs) bind to specific receptors that activate signaling pathways driving the development and progression of tumors. Inhibitors of prostaglandin formation, COX inhibitors, or nonsteroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use prevent tumor development. NSAIDs also alter gene expression independent of COX inhibition and these changes in gene expression also appear to contribute to the anti-tumorigenic activity of these drugs. Many NSAIDs, as illustrated by sulindac sulfide, alter gene expressions by altering the expression or phosphorylation status of the transcription factors specificity protein 1 and early growth response-1 with the balance between these two events resulting in increases or decreases in specific target genes. In this review, we have summarized and discussed the various genes altered by this mechanism after NSAID treatment and how these changes in expression relate to the anti-tumorigenic activity. A major focus of the review is on NSAID-activated gene (NAG-1) or growth differentiation factor 15. This unique member of the TGF-β superfamily is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities. Investigations with a transgenic mouse expressing the human NAG-1 suggest it acts to suppress tumor development in several mouse models of cancer. The biochemistry and biology of NAG-1 were discussed as potential contributor to cancer prevention by COX inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.

    PubMed  CAS  Google Scholar 

  2. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118(3), 285–296.

    PubMed  CAS  Google Scholar 

  3. Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G. Y., Vallabhapurapu, S., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15(2), 103–113.

    PubMed  CAS  Google Scholar 

  4. Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.

    PubMed  CAS  Google Scholar 

  5. Wolf, I., O’Kelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66(15), 7818–7823.

    PubMed  CAS  Google Scholar 

  6. Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-beta-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17468–17473.

    PubMed  CAS  Google Scholar 

  7. Hata, A. N., & Breyer, R. M. (2004). Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology and Therapeutics, 103(2), 147–166.

    PubMed  CAS  Google Scholar 

  8. Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., et al. (2001). Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nature Medicine, 7(9), 1048–1051.

    PubMed  CAS  Google Scholar 

  9. Mutoh, M., Watanabe, K., Kitamura, T., Shoji, Y., Takahashi, M., Kawamori, T., et al. (2002). Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 62(1), 28–32.

    PubMed  CAS  Google Scholar 

  10. Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 591–596.

    PubMed  CAS  Google Scholar 

  11. Fiebich, B. L., Schleicher, S., Spleiss, O., Czygan, M., & Hull, M. (2001). Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. Journal of Neurochemistry, 79(5), 950–958.

    PubMed  CAS  Google Scholar 

  12. Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74(2–3), 143–153.

    PubMed  CAS  Google Scholar 

  13. Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal of Biological Chemistry, 278(37), 35451–35457.

    PubMed  CAS  Google Scholar 

  14. Shao, J., Lee, S. B., Guo, H., Evers, B. M., & Sheng, H. (2003). Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Research, 63(17), 5218–5223.

    PubMed  CAS  Google Scholar 

  15. Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278(14), 12151–12156.

    PubMed  CAS  Google Scholar 

  16. Han, S., & Roman, J. (2004). Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth. Biochemical and Biophysical Research Communications, 314(4), 1093–1099.

    PubMed  CAS  Google Scholar 

  17. Baron, J. A. (2009). Aspirin and NSAIDs for the prevention of colorectal cancer. Recent Results in Cancer Research, 181, 223–229.

    PubMed  CAS  Google Scholar 

  18. Iwama, T. (2009). NSAIDs and colorectal cancer prevention. Journal of Gastroenterology, 44(Suppl 19), 72–76.

    PubMed  CAS  Google Scholar 

  19. Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.

    PubMed  CAS  Google Scholar 

  20. Olsen, J. H., Friis, S., Poulsen, A. H., Fryzek, J., Harving, H., Tjonneland, A., et al. (2008). Use of NSAIDs, smoking and lung cancer risk. British Journal of Cancer, 98(1), 232–237.

    PubMed  CAS  Google Scholar 

  21. Zhao, Y. S., Zhu, S., Li, X. W., Wang, F., Hu, F. L., Li, D. D., et al. (2009). Association between NSAIDs use and breast cancer risk: a systematic review and meta-analysis. Breast Cancer Research and Treatment, 117(1), 141–150.

    PubMed  CAS  Google Scholar 

  22. Piazza, G. A., Keeton, A. B., Tinsley, H. N., Gary, B. D., Whitt, J. D., Mathew, B., et al. (2009). A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prevention Research (Philadelphia, Pa.), 2(6), 572–580.

    CAS  Google Scholar 

  23. Baek, S. J., Kim, K. S., Nixon, J. B., Wilson, L. C., & Eling, T. E. (2001). Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Molecular Pharmacology, 59(4), 901–908.

    PubMed  CAS  Google Scholar 

  24. Zhang, X., Morham, S. G., Langenbach, R., & Young, D. A. (1999). Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. The Journal of Experimental Medicine, 190(4), 451–459.

    PubMed  CAS  Google Scholar 

  25. Chiu, C. H., McEntee, M. F., & Whelan, J. (1997). Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesis. Cancer Research, 57(19), 4267–4273.

    PubMed  CAS  Google Scholar 

  26. Baek, S. J., & Eling, T. E. (2006). Changes in gene expression contribute to cancer prevention by COX inhibitors. Progress in Lipid Research, 45(1), 1–16.

    PubMed  CAS  Google Scholar 

  27. Ikawa, H., Kamitani, H., Calvo, B. F., Foley, J. F., & Eling, T. E. (1999). Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Research, 59(2), 360–366.

    PubMed  CAS  Google Scholar 

  28. Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70(1), 7–15.

    PubMed  CAS  Google Scholar 

  29. Shureiqi, I., Chen, D., Lee, J. J., Yang, P., Newman, R. A., Brenner, D. E., et al. (2000). 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. Journal of the National Cancer Institute, 92(14), 1136–1142.

    PubMed  CAS  Google Scholar 

  30. Shureiqi, I., Chen, D., Day, R. S., Zuo, X., Hochman, F. L., Ross, W. A., et al. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prev Res (Phila), 3(7), 829–838.

    CAS  Google Scholar 

  31. Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25(8), 1225–1241.

    PubMed  CAS  Google Scholar 

  32. Kim, J. S., Baek, S. J., Bottone, F. G., Jr., Sali, T., & Eling, T. E. (2005). Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells. Molecular Cancer Research, 3(9), 511–517.

    PubMed  CAS  Google Scholar 

  33. Shieh, S. Y., Ikeda, M., Taya, Y., & Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91(3), 325–334.

    PubMed  CAS  Google Scholar 

  34. Zhu, H., Glasgow, W., George, M. D., Chrysovergis, K., Olden, K., Roberts, J. D., et al. (2008). 15-Lipoxygenase-1 activates tumor suppressor p53 independent of enzymatic activity. International Journal of Cancer, 123(12), 2741–2749.

    CAS  Google Scholar 

  35. Silverman, E. S., & Collins, T. (1999). Pathways of Egr-1-mediated gene transcription in vascular biology. American Journal of Pathology, 154(3), 665–670.

    PubMed  CAS  Google Scholar 

  36. Krones-Herzig, A., Mittal, S., Yule, K., Liang, H., English, C., Urcis, R., et al. (2005). Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Research, 65(12), 5133–5143. doi:10.1158/0008-5472.can-04-3742.

    PubMed  CAS  Google Scholar 

  37. Nair, P., Muthukkumar, S., Sells, S. F., Han, S. S., Sukhatme, V. P., & Rangnekar, V. M. (1997). Early growth response-1-dependent apoptosis is mediated by p53. Journal of Biological Chemistry, 272(32), 20131–20138.

    PubMed  CAS  Google Scholar 

  38. Baek, S. J., Kim, J. S., Moore, S. M., Lee, S. H., Martinez, J., & Eling, T. E. (2005). Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Molecular Pharmacology, 67(2), 356–364.

    PubMed  CAS  Google Scholar 

  39. Virolle, T., Adamson, E. D., Baron, V., Birle, D., Mercola, D., Mustelin, T., et al. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nature Cell Biology, 3(12), 1124–1128.

    PubMed  CAS  Google Scholar 

  40. Cho, K. N., Sukhthankar, M., Lee, S. H., Yoon, J. H., & Baek, S. J. (2007). Green tea catechin (−)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. European Journal of Cancer, 43(16), 2404–2412.

    PubMed  CAS  Google Scholar 

  41. Whitlock, N. C., Bahn, J. H., Lee, S. H., Eling, T. E., & Baek, S. J. (2011). Resveratrol-induced apoptosis is mediated by early growth response-1, Kruppel-like factor 4, and activating transcription factor 3. Cancer Prevention Research (Philadelphia, Pa.), 4(1), 116–127.

    CAS  Google Scholar 

  42. Yamaguchi, K., Lee, S. H., Kim, J. S., Wimalasena, J., Kitajima, S., & Baek, S. J. (2006). Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Research, 66(4), 2376–2384.

    PubMed  CAS  Google Scholar 

  43. Safe, S., & Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. European Journal of Cancer, 41(16), 2438–2448.

    PubMed  CAS  Google Scholar 

  44. Abdelrahim, M., Baker, C. H., Abbruzzese, J. L., Sheikh-Hamad, D., Liu, S., Cho, S. D., et al. (2007). Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Research, 67(7), 3286–3294.

    PubMed  CAS  Google Scholar 

  45. Abdelrahim, M., & Safe, S. (2005). Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Molecular Pharmacology, 68(2).

  46. Kim, Y., Ratziu, V., Choi, S. G., Lalazar, A., Theiss, G., Dang, Q., et al. (1998). Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. Journal of Biological Chemistry, 273(50), 33750–33758.

    PubMed  CAS  Google Scholar 

  47. Tymms, M. J., Ng, A. Y., Thomas, R. S., Schutte, B. C., Zhou, J., Eyre, H. J., et al. (1997). A novel epithelial-expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to 1q32.2 and expression in tissues and cancer. Oncogene, 15(20), 2449–2462.

    PubMed  CAS  Google Scholar 

  48. Chang, C. H., Scott, G. K., Kuo, W. L., Xiong, X., Suzdaltseva, Y., Park, J. W., et al. (1997). ESX: a structurally unique Ets overexpressed early during human breast tumorigenesis. Oncogene, 14(13), 1617–1622.

    PubMed  CAS  Google Scholar 

  49. Oettgen, P., Alani, R. M., Barcinski, M. A., Brown, L., Akbarali, Y., Boltax, J., et al. (1997). Isolation and characterization of a novel epithelium-specific transcription factor, ESE-1, a member of the ets family. Molecular and Cellular Biology, 17(8), 4419–4433.

    PubMed  CAS  Google Scholar 

  50. Ng, A. Y., Waring, P., Ristevski, S., Wang, C., Wilson, T., Pritchard, M., et al. (2002). Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology, 122(5), 1455–1466.

    PubMed  CAS  Google Scholar 

  51. Brembeck, F. H., Opitz, O. G., Libermann, T. A., & Rustgi, A. K. (2000). Dual function of the epithelial specific ets transcription factor, ELF3, in modulating differentiation. Oncogene, 19(15), 1941–1949.

    PubMed  CAS  Google Scholar 

  52. Lee, S.-H., Bahn, J. H., Choi, C. K., Whitlock, N. C., English, A. E., Safe, S., et al. (2008). ESE-1/EGR-1 pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells. Molecular Cancer Therapeutics, 7(12), 3739–3750.

    PubMed  CAS  Google Scholar 

  53. Baek, S. J., Wilson, L. C., & Eling, T. E. (2002). Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis, 23(3), 425–434.

    PubMed  CAS  Google Scholar 

  54. Li, P. X., Wong, J., Ayed, A., Ngo, D., Brade, A. M., Arrowsmith, C., et al. (2000). Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. Journal of Biological Chemistry, 275(26), 20127–20135.

    PubMed  CAS  Google Scholar 

  55. Baek, S. J., Kim, J. S., Nixon, J. B., DiAugustine, R. P., & Eling, T. E. (2004). Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. Journal of Biological Chemistry, 279(8), 6883–6892.

    PubMed  CAS  Google Scholar 

  56. Kambe, A., Iguchi, G., Moon, Y., Kamitani, H., Watanabe, T., & Eling, T. E. (2008). Regulation of EP4 expression via the Sp-1 transcription factor: inhibition of expression by anti-cancer agents. Biochimica et Biophysica Acta, 1783(6), 1211–1219.

    PubMed  CAS  Google Scholar 

  57. Foord, S. M., Marks, B., Stolz, M., Bufflier, E., Fraser, N. J., & Lee, M. G. (1996). The structure of the prostaglandin EP4 receptor gene and related pseudogenes. Genomics, 35(1), 182–188.

    PubMed  CAS  Google Scholar 

  58. Kambe, A., Yoshioka, H., Kamitani, H., Watanabe, T., Baek, S. J., & Eling, T. E. (2009). The cyclooxygenase inhibitor sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells. Cancer Prevention Research (Philadelphia, Pa.), 2(12), 1088–1099.

    CAS  Google Scholar 

  59. Lu, D., Wolfgang, C. D., & Hai, T. (2006). Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. Journal of Biological Chemistry, 281(15), 10473–10481.

    PubMed  CAS  Google Scholar 

  60. Yin, H. W., Lei, F., Wang, A. L., Cheng, J., & Zhou, Y. (2007). Bioelectrical impedance assay to monitor changes in aspirin-treated human colon cancer HT-29 cell shape during apoptosis. Analytical Letters, 40, 85–94.

    CAS  Google Scholar 

  61. Yan, C., & Boyd, D. D. (2006). ATF3 regulates the stability of p53: a link to cancer. Cell Cycle, 5(9), 926–929.

    PubMed  CAS  Google Scholar 

  62. Fan, F., Jin, S., Amundson, S. A., Tong, T., Fan, W., Zhao, H., et al. (2002). ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene, 21(49), 7488–7496.

    PubMed  CAS  Google Scholar 

  63. Huang, X., Li, X., & Guo, B. (2008). KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. Journal of Biological Chemistry, 283(44), 29795–29801.

    PubMed  CAS  Google Scholar 

  64. Yan, C., Wang, H., & Boyd, D. D. (2002). ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. Journal of Biological Chemistry, 277(13), 10804–10812.

    PubMed  CAS  Google Scholar 

  65. Stearns, M. E., Kim, G., Garcia, F., & Wang, M. (2004). Interleukin-10 induced activating transcription factor 3 transcriptional suppression of matrix metalloproteinase-2 gene expression in human prostate CPTX-1532 Cells. Molecular Cancer Research, 2(7), 403–416.

    PubMed  CAS  Google Scholar 

  66. Bottone, F. G., Jr., Moon, Y., Kim, J. S., Alston-Mills, B., Ishibashi, M., & Eling, T. E. (2005). The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Molecular Cancer Therapeutics, 4(5), 693–703.

    PubMed  CAS  Google Scholar 

  67. Lee, S. H., Bahn, J. H., Whitlock, N. C., & Baek, S. J. (2010). Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene, 29(37), 5182–5192.

    PubMed  CAS  Google Scholar 

  68. McEntee, M. F., Chiu, C. H., & Whelan, J. (1999). Relationship of beta-catenin and Bcl-2 expression to sulindac-induced regression of intestinal tumors in Min mice. Carcinogenesis, 20(4), 635–640.

    PubMed  CAS  Google Scholar 

  69. Dihlmann, S., Siermann, A., & von Knebel Doeberitz, M. (2001). The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene, 20(5), 645–653.

    PubMed  CAS  Google Scholar 

  70. Dihlmann, S., Klein, S., & Doeberitz Mv, M. K. (2003). Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated beta-catenin. Molecular Cancer Therapeutics, 2(6), 509–516.

    PubMed  CAS  Google Scholar 

  71. Greenspan, E. J., Madigan, J. P., Boardman, L. A., & Rosenberg, D. W. (2011). Ibuprofen inhibits activation of nuclear β-catenin in human colon adenomas and induces the phosphorylation of GSK-3β. Cancer Prevention Research, 4(1), 161–171.

    PubMed  CAS  Google Scholar 

  72. Bootcov, M. R., Bauskin, A. R., Valenzuela, S. M., Moore, A. G., Bansal, M., He, X. Y., et al. (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proceedings of the National Academy of Sciences of the United States of America, 94(21), 11514–11519.

    PubMed  CAS  Google Scholar 

  73. Paralkar, V. M., Vail, A. L., Grasser, W. A., Brown, T. A., Xu, H., Vukicevic, S., et al. (1998). Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. Journal of Biological Chemistry, 273(22), 13760–13767.

    PubMed  CAS  Google Scholar 

  74. Bottner, M., Laaff, M., Schechinger, B., Rappold, G., Unsicker, K., & Suter-Crazzolara, C. (1999). Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene, 237(1), 105–111.

    PubMed  CAS  Google Scholar 

  75. Hromas, R., Hufford, M., Sutton, J., Xu, D., Li, Y., & Lu, L. (1997). PLAB, a novel placental bone morphogenetic protein. Biochimica et Biophysica Acta, 1354, 40–44.

    PubMed  CAS  Google Scholar 

  76. Albertoni, M., Shaw, P. H., Nozaki, M., Godard, S., Tenan, M., Hamou, M. F., et al. (2002). Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene, 21(27), 4212–4219.

    PubMed  CAS  Google Scholar 

  77. Lawton, L. N., Bonaldo, M. F., Jelenc, P. C., Qiu, L., Baumes, S. A., Marcelino, R. A., et al. (1997). Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene, 203, 17–26.

    PubMed  CAS  Google Scholar 

  78. Bauskin, A. R., Zhang, H.-P., Fairlie, W. D., He, X. Y., Russell, P. K., Moore, A. G., et al. (2000). The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-β superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO Journal, 19(10), 2212–2220.

    PubMed  CAS  Google Scholar 

  79. Bauskin, A. R., Brown, D. A., Junankar, S., Rasiah, K. K., Eggleton, S., Hunter, M., et al. (2005). The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Research, 65(6), 2330–2336.

    PubMed  CAS  Google Scholar 

  80. Baek, S. J., Okazaki, R., Lee, S. H., Martinez, J., Kim, J. S., Yamaguchi, K., et al. (2006). Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology, 131(5), 1553–1560.

    PubMed  CAS  Google Scholar 

  81. Cekanova, M., Lee, S. H., Donnell, R. L., Sukhthankar, M., Eling, T. E., Fischer, S. M., et al. (2009). Nonsteroidal anti-inflammatory drug-activated gene-1 expression inhibits urethane-induced pulmonary tumorigenesis in transgenic mice. Cancer Prevention Research (Phila Pa), 2(5), 450–458.

    CAS  Google Scholar 

  82. Nakamura, T., Scorilas, A., Stephan, C., Yousef, G. M., Kristiansen, G., Jung, K., et al. (2003). Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. British Journal of Cancer, 88(7), 1101–1104.

    PubMed  CAS  Google Scholar 

  83. Senapati, S., Rachagani, S., Chaudhary, K., Johansson, S. L., Singh, R. K., & Batra, S. K. (2010). Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK-RhoA signaling pathway. Oncogene, 29(9), 1293–1302.

    PubMed  CAS  Google Scholar 

  84. Chintharlapalli, S., Papineni, S., Baek, S. J., Liu, S., & Safe, S. (2005). 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Molecular Pharmacology, 68(6), 1782–1792.

    PubMed  CAS  Google Scholar 

  85. Jutooru, I., Chadalapaka, G., Chintharlapalli, S., Papineni, S., & Safe, S. (2009). Induction of apoptosis and nonsteroidal anti-inflammatory drug-activated gene 1 in pancreatic cancer cells by a glycyrrhetinic acid derivative. Molecular Carcinogenesis, 48(8), 692–702.

    PubMed  CAS  Google Scholar 

  86. Kelly, J. A., Lucia, M. S., & Lambert, J. R. (2009). p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Letters, 277(1), 38–47.

    PubMed  CAS  Google Scholar 

  87. Yang, H., Filipovic, Z., Brown, D., Breit, S. N., & Vassilev, L. T. (2003). Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Molecular Cancer Therapeutics, 2(10), 1023–1029.

    PubMed  CAS  Google Scholar 

  88. Kim, K. K., Lee, J. J., Yang, Y., You, K. H., & Lee, J. H. (2008). Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis, 29(4), 704–712.

    PubMed  CAS  Google Scholar 

  89. Chen, S. J., Karan, D., Johansson, S. L., Lin, F. F., Zeckser, J., Singh, A. P., et al. (2007). Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate, 67(5), 557–571.

    PubMed  CAS  Google Scholar 

  90. Cekanova, M., Lee, S. H., Donnell, R. L., Sukhthankar, M., Eling, T. E., Fischer, S. M., et al. (2009). Nonsteroidal anti-inflammatory drug-activated gene-1 expression inhibits urethane-induced pulmonary tumorigenesis in transgenic mice. Cancer Prevention Research (Philadelphia, Pa.), 2(5), 450–458.

    CAS  Google Scholar 

  91. Zimmers, T. A., Gutierrez, J. C., & Koniaris, L. G. (2010). Loss of GDF-15 abolishes sulindac chemoprevention in the ApcMin/+ mouse model of intestinal cancer. Journal of Cancer Research and Clinical Oncology, 136(4), 571–576.

    PubMed  CAS  Google Scholar 

  92. Yamaguchi, K., Lee, S. H., Eling, T. E., & Baek, S. J. (2004). Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of phosphatidylinositol 3-kinase/AKT/GSK-3beta pathway. Journal of Biological Chemistry, 279(48), 49617–49623.

    PubMed  CAS  Google Scholar 

  93. Gitenay, D., & Baron, V. T. (2009). Is EGR1 a potential target for prostate cancer therapy? Future Oncology, 5(7), 993–1003.

    PubMed  CAS  Google Scholar 

  94. Baron, V., Adamson, E. D., Calogero, A., Ragona, G., & Mercola, D. (2006). The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Therapy, 13(2), 115–124.

    PubMed  CAS  Google Scholar 

  95. Shappell, S. B., Manning, S., Boeglin, W. E., Guan, Y. F., Roberts, R. L., Davis, L., et al. (2001). Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia, 3(4), 287–303.

    PubMed  CAS  Google Scholar 

  96. Fairlie, W. D., Zhang, H. P., Wu, W. M., Pankhurst, S. L., Bauskin, A. R., Russell, P. K., et al. (2001). The propeptide of the transforming growth factor-beta superfamily member, macrophage inhibitory cytokine-1 (MIC-1), is a multifunctional domain that can facilitate protein folding and secretion. Journal of Biological Chemistry, 276(20), 16911–16918.

    PubMed  CAS  Google Scholar 

  97. Kim, K. S., Baek, S. J., Flake, G. P., Loftin, C. D., Calvo, B. F., & Eling, T. E. (2002). Expression and regulation of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in human and mouse tissue. Gastroenterology, 122(5), 1388–1398.

    PubMed  CAS  Google Scholar 

  98. Ding, Q., Mracek, T., Gonzalez-Muniesa, P., Kos, K., Wilding, J., Trayhurn, P., et al. (2009). Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology, 150(4), 1688–1696.

    PubMed  CAS  Google Scholar 

  99. Tanno, T., Bhanu, N. V., Oneal, P. A., Goh, S. H., Staker, P., Lee, Y. T., et al. (2007). High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nature Medicine, 13(9), 1096–1101.

    PubMed  CAS  Google Scholar 

  100. Koopmann, J., Buckhaults, P., Brown, D. A., Zahurak, M. L., Sato, N., Fukushima, N., et al. (2004). Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clinical Cancer Research, 10(7), 2386–2392.

    PubMed  CAS  Google Scholar 

  101. Brown, D. A., Lindmark, F., Stattin, P., Balter, K., Adami, H. O., Zheng, S. L., et al. (2009). Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer. Clinical Cancer Research, 15(21), 6658–6664.

    PubMed  CAS  Google Scholar 

  102. Welsh, J. B., Sapinoso, L. M., Kern, S. G., Brown, D. A., Liu, T., Bauskin, A. R., et al. (2003). Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3410–3415.

    PubMed  CAS  Google Scholar 

  103. Eitel, I., Blase, P., Adams, V., Hildebrand, L., Desch, S., Schuler, G., et al. (2011). Growth-differentiation factor 15 as predictor of mortality in acute reperfused ST-elevation myocardial infarction: insights from cardiovascular magnetic resonance. Heart, 97(8), 632–640.

    PubMed  Google Scholar 

  104. Maisel, A. (2007). Biomarkers in heart failure. Does prognostic utility translate to clinical futility? Journal of the American College of Cardiology, 50(11), 1061–1063.

    PubMed  Google Scholar 

  105. Wiklund, F. E., Bennet, A. M., Magnusson, P. K., Eriksson, U. K., Lindmark, F., Wu, L., et al. (2010). Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell, 9(6), 1057–1064.

    PubMed  CAS  Google Scholar 

  106. Moore, A. G., Brown, D. A., Fairlie, W. D., Bauskin, A. R., Brown, P. K., Munier, M. L., et al. (2000). The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. Journal of Clinical Endocrinology and Metabolism, 85(12), 4781–4788.

    PubMed  CAS  Google Scholar 

  107. Fairlie, W. D., Russell, P. K., Wu, W. M., Moore, A. G., Zhang, H. P., Brown, P. K., et al. (2001). Epitope mapping of the transforming growth factor-beta superfamily protein, macrophage inhibitory cytokine-1 (MIC-1): identification of at least five distinct epitope specificities. Biochemistry, 40(1), 65–73.

    PubMed  CAS  Google Scholar 

  108. Lindmark, F., Zheng, S. L., Wiklund, F., Bensen, J., Balter, K. A., Chang, B., et al. (2004). H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. Journal of the National Cancer Institute, 96(16), 1248–1254.

    PubMed  CAS  Google Scholar 

  109. Hayes, V. M., Severi, G., Southey, M. C., Padilla, E. J., English, D. R., Hopper, J. L., et al. (2006). Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival. Cancer Epidemiology, Biomarkers & Prevention, 15(6), 1223–1225.

    CAS  Google Scholar 

  110. Cheng, I., Krumroy, L. M., Plummer, S. J., Casey, G., & Witte, J. S. (2007). MIC1 and IL1RN genetic variation and advanced prostate cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 16(6), 1309–1311.

    CAS  Google Scholar 

  111. Brown, D. A., Ward, R. L., Buckhaults, P., Liu, T., Romans, K. E., Hawkins, N. J., et al. (2003). MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clinical Cancer Research, 9(7), 2642–2650.

    PubMed  CAS  Google Scholar 

  112. Kadowaki, M., Yoshioka, H., Kamitani, H., Watanabe, T., Wade, P. A., & Eling, T. E. (2011) DNA methylation-mediated silencing of nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) in glioma cell lines. Int J Cancer. doi:10.1002/ijc.26082.

  113. Pang, R. P., Zhou, J. G., Zeng, Z. R., Li, X. Y., Chen, W., Chen, M. H., et al. (2007). Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3beta/NAG-1 pathway. Cancer Letters, 251(2), 268–277.

    PubMed  CAS  Google Scholar 

  114. Jang, T. J., Kang, H. J., Kim, J. R., & Yang, C. H. (2004). Non-steroidal anti-inflammatory drug activated gene (NAG-1) expression is closely related to death receptor-4 and -5 induction, which may explain sulindac sulfide induced gastric cancer cell apoptosis. Carcinogenesis, 25(10), 1853–1858.

    PubMed  CAS  Google Scholar 

  115. Baek, S. J., Wilson, L. C., Lee, C. H., & Eling, T. E. (2002). Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. Journal of Pharmacology and Experimental Therapeutics, 301(3), 1126–1131.

    PubMed  CAS  Google Scholar 

  116. Wang, X., Kingsley, P. J., Marnett, L. J., & Eling, T. E. (2011). The role of NAG-1/GDF15 in the inhibition of intestinal polyps in APC/Min mice by sulindac. Cancer Prevention Research (Philadelphia), 4(1), 150–160.

    CAS  Google Scholar 

  117. Kim, J. H., Chang, J. H., Rhee, K. H., Yoon, J. H., Kwon, S. H., Song, K., et al. (2008). Cyclooxygenase inhibitors induce apoptosis in sinonasal cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene. International Journal of Cancer, 122(8), 1765–1773.

    CAS  Google Scholar 

  118. Iguchi, G., Chrysovergis, K., Lee, S. H., Baek, S. J., Langenbach, R., & Eling, T. E. (2009). A reciprocal relationship exists between non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) and cyclooxygenase-2. Cancer Letters, 282(2), 152–158.

    PubMed  CAS  Google Scholar 

  119. Kim, J. S., Baek, S. J., Sali, T., & Eling, T. E. (2005). The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Molecular Cancer Therapeutics, 4(3), 487–493.

    PubMed  CAS  Google Scholar 

  120. Wynne, S., & Djakiew, D. (2010). NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75(NTR) pathway. Molecular Cancer Research, 8(12), 1656–1664.

    PubMed  CAS  Google Scholar 

  121. Diener, H. C. (2006). Secondary stroke prevention with antiplatelet drugs: have we reached the ceiling? International Journal of Stroke, 1(1), 4–8.

    PubMed  Google Scholar 

  122. Chan, A. T., Ogino, S., & Fuchs, C. S. (2009). Aspirin use and survival after diagnosis of colorectal cancer. Journal of the American Medical Association, 302(6), 649–658.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Misty Bailey (University of Tennessee), Dr. Shim, and Dr. Paul Wade (NIEHS) for their critical reading of this manuscript. We also thank Dr. Seong-Ho Lee (University of Tennessee) for his assistance on preparing the figures. This research was supported (in part) by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Eling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Baek, S.J. & Eling, T. COX inhibitors directly alter gene expression: role in cancer prevention?. Cancer Metastasis Rev 30, 641–657 (2011). https://doi.org/10.1007/s10555-011-9301-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9301-4

Keywords

Navigation