Skip to main content
Log in

An updated view on the structure and function of PYRIN domains

  • The Domains of Apoptosis and Inflammation
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The PYRIN domain (PYD) is a protein–protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356

    Article  CAS  PubMed  Google Scholar 

  2. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

    Article  PubMed  CAS  Google Scholar 

  3. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  CAS  PubMed  Google Scholar 

  5. Chang DW, Ditsworth D, Liu H, Srinivasula SM, Alnemri ES, Yang X (2003) Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem 278:16466–16469

    Article  CAS  PubMed  Google Scholar 

  6. Park HH (2012) Structural features of caspase-activating complexes. Int J Mol Sci 13:4807–4818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Park HH, Lo Y-C, Lin S-C, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26:475–481

    Article  CAS  PubMed  Google Scholar 

  9. Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36:541–552

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y (2002) Apoptosome: the cellular engine for the activation of caspase-9. Structure 10:285–288

    Article  CAS  PubMed  Google Scholar 

  11. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    Article  CAS  PubMed  Google Scholar 

  12. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  CAS  PubMed  Google Scholar 

  13. Park HH, Logette E, Raunser S, Cuenin S, Walz T et al (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128:533–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1b. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  15. Shi J, Zhao Y, Wang Y, Gao W, Ding J et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192

    Article  CAS  PubMed  Google Scholar 

  16. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    Article  CAS  PubMed  Google Scholar 

  18. Bae JY, Park HH (2011) Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 286:39528–39536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Martin BN, Wang C, Willette-Brown J, Herjan T, Gulen MF et al (2014) IKKα negatively regulates ASC-dependent inflammasome activation. Nat Commun 5:4977

    Article  PubMed  Google Scholar 

  20. Jang T-H, Park JH, Park HH (2013) Novel disulfide bond-mediated dimerization of the CARD domain was revealed by the crystal structure of CARMA1 CARD. PLoS ONE 8:e79778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated NF-kB and pro-Caspase-1 regulation. Biochem J 373:101–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Castanier C, Zemirli N, Portier A, Garcin D, Bidère N et al (2012) MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jiang X, Kinch LN, Brautigam CA, Chen X, Du F et al (2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36:959–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ver Heul AM, Fowler CA, Ramaswamy S, Piper RC (2013) Ubiquitin regulates caspase recruitment domain-mediated signaling by nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2. J Biol Chem 288:6890–6902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ver Heul AM, Gakhar L, Piper RC, Subramanian R (2014) Crystal structure of a complex of NOD1 CARD and ubiquitin. PLoS ONE 9:e104017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Zeng W, Sun L, Jiang X, Chen X, Hou F et al (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120

    Article  CAS  PubMed  Google Scholar 

  28. Bertin J, DiStefano PS (2000) The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ 7:1273–1274

    Article  CAS  PubMed  Google Scholar 

  29. Pawłowski K, Pio F, Chu Z, Reed JC, Godzik A (2001) PAAD: a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends Biochem Sci 26:85–87

    Article  PubMed  Google Scholar 

  30. Staub E, Dahl E, Rosenthal A (2001) The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem Sci 26:83–85

    Article  CAS  PubMed  Google Scholar 

  31. Fairbrother WJ, Gordon NC, Humke EW, O’Rourke KM, Starovasnik MA et al (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10:1911–1918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nadiri A, Wolinski MK, Saleh M (2006) The inflammatory caspases: key players in the host response to pathogenic invasion and sepsis. J Immunol 177:4239–4245

    Article  CAS  PubMed  Google Scholar 

  33. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG et al (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N et al (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490:288–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  CAS  PubMed  Google Scholar 

  36. Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G et al (2014) A critical role for human caspase-4 in endotoxin sensitivity. J Immunol 193:335–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD (2012) Caspase-4 is required for activation of inflammasomes. J Immunol 188:1992–2000

    Article  CAS  PubMed  Google Scholar 

  38. Consortium TFF (1997) A candidate gene for familial mediterranean fever. Nat Genet 17:25–31

    Article  Google Scholar 

  39. Consortium TIF (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial mediterranean fever. Cell 90:797–807

    Article  Google Scholar 

  40. de Alba E (2009) Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 284:32932–32941

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Hiller S, Kohl A, Fiorito F, Herrmann T, Wider G et al (2003) NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure 11:1199–1205

    Article  CAS  PubMed  Google Scholar 

  42. Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G (2003) The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol 332:1155–1163

    Article  CAS  PubMed  Google Scholar 

  43. Natarajan A, Ghose R, Hill JM (2006) Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling. J Biol Chem 281:31863–31875

    Article  CAS  PubMed  Google Scholar 

  44. Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W (2010) Three-dimensional structure of the NLRP7 pyrin domain: insight into PYRIN-PYRIN-mediated effector domain signaling in innate immunity. J Biol Chem 285:27402–27410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Eibl C, Grigoriu S, Hessenberger M, Wenger J, Puehringer S et al (2012) Structural and functional analysis of the NLRP4 pyrin domain. Biochemistry 51:7330–7341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W (2011) The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 413:790–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Do KH, Park HH (2013) Crystallization and preliminary X-ray crystallographic studies of cPOP1. Acta Crystallogr, Sect F 69:292–294

    Article  CAS  Google Scholar 

  48. Eibl C, Hessenberger M, Wenger J, Brandstetter H (2014) Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. Acta Crystallogr D Biol Crystallogr 70:2007–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jin T, Perry A, Smith P, Jiang J, Xiao TS (2013) Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem 288:13225–13235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M et al (2012) NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37:1009–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti T-D, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:3209

    PubMed Central  PubMed  Google Scholar 

  52. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  CAS  PubMed  Google Scholar 

  53. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  54. Rubartelli A (2012) Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol 92:951–958

    Article  CAS  PubMed  Google Scholar 

  55. Cui J, Li Y, Zhu L, Liu D, Songyang Z et al (2012) NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 13:387–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fiorentino L, Stehlik C, Oliveira V, Ariza ME, Godzik A, Reed JC (2002) A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem 277:35333–35340

    Article  CAS  PubMed  Google Scholar 

  57. Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F (2011) NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol 186:1646–1655

    Article  CAS  PubMed  Google Scholar 

  58. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206

    Article  CAS  PubMed  Google Scholar 

  59. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD et al (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK et al (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK et al (2007) Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 178:1256–1260

    Article  CAS  PubMed  Google Scholar 

  62. Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP-Y (2003) Cutting edge: Monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J Immunol 170:5354–5358

    Article  CAS  PubMed  Google Scholar 

  63. Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P et al (2005) The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 280:39914–39924

    Article  CAS  PubMed  Google Scholar 

  64. Zaki MH, Vogel P, Malireddi RKS, Body-Malapel M, Anand PK et al (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20:649–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36:742–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kinoshita T, Kondoh C, Hasegawa M, Imamura R, Suda T (2006) Fas-associated factor 1 is a negative regulator of PYRIN-containing Apaf-1-like protein 1. Int Immunol 18:1701–1706

    Article  CAS  PubMed  Google Scholar 

  67. Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J et al (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 6:121–128

    Article  CAS  PubMed  Google Scholar 

  68. Masumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y et al (2003) ASC is an activating adaptor for NF-kappaB and caspase-8-dependent apoptosis. Biochem Biophys Res Commun 303:69–73

    Article  CAS  PubMed  Google Scholar 

  69. Masumoto J, Taniguchi S, Sagara J (2001) Pyrin N-terminal homology domain- and caspase recruitment domain-dependent oligomerization of ASC. Biochem Biophysical Res Commun 280:652–655

    Article  CAS  Google Scholar 

  70. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA et al (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20:1149–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yang JK, Wang L, Zheng L, Wan F, Ahmed M et al (2005) Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20:939–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kaufmann M, Bozic D, Briand C, Bodmer J-L, Zerbe O et al (2002) Identification of a basic surface area of the FADD death effector domain critical for apoptotic signaling. FEBS Lett 527:250–254

    Article  CAS  PubMed  Google Scholar 

  73. Jin T, Perry A, Jiang J, Smith P, Curry J et al (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C (2009) Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol 182:3173–3182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T et al (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274:33835–33838

    Article  CAS  PubMed  Google Scholar 

  76. Moriya M, Taniguchi S, Wu P, Liepinsh E, Otting G, Sagara J (2005) Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC. Biochemistry 44:575–583

    Article  CAS  PubMed  Google Scholar 

  77. Vajjhala PR, Mirams RE, Hill JM (2012) Multiple binding sites on the ASC pyrin domain allow self-association and interaction with NLRP3. J Biol Chem 287:41732–41743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Weber CH, Vincenz C (2001) A docking model of key components of the DISC complex: death domain superfamily interactions redefined. FEBS Lett 492:171–176

    Article  CAS  PubMed  Google Scholar 

  79. Lin S-C, Lo Y-C, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399:549–557

    Article  CAS  PubMed  Google Scholar 

  81. Xiao T, Towb P, Wasserman SA, Sprang SR (1999) Three-dimensional structure of a complex between the death domains of pelle and tube. Cell 99:545–555

    Article  CAS  PubMed  Google Scholar 

  82. Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J (2014) Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci USA 111:E62–E71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Cai X, Chen J, Xu H, Liu S, Jiang Q-X et al (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222

    Article  CAS  PubMed  Google Scholar 

  84. Halfmann R, Lindquist S (2008) Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. J Vis Exp 17:pii 838

    Google Scholar 

  85. Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  87. Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15:738–748

    Article  CAS  PubMed  Google Scholar 

  88. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A et al (2014) The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 15:727–737

    Article  CAS  PubMed  Google Scholar 

  89. Broderick L, Hoffman HM (2014) cASCading specks. Nat Immunol 15:698–700

    Article  CAS  PubMed  Google Scholar 

  90. Elliott JM, Rouge L, Wiesmann C, Scheer JM (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284:6546–6553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Man SM, Hopkins LJ, Nugent E, Cox S, Glück IM et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111:7403–7408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Stehlik C, Dorfleutner A (2007) COPs and POPs: modulators of inflammasome activity. J Immunol 179:7993–7998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Le HT, Harton JA (2013) Pyrin- and CARD-only proteins as regulators of NLR functions. Front Immunol 4:275

    PubMed Central  PubMed  Google Scholar 

  95. Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C (2010) Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm 7:23

    Article  CAS  Google Scholar 

  96. Srimathi T, Robins SL, Dubas RL, Chang H, Cheng H et al (2008) Mapping of POP1-binding site on pyrin domain of ASC. J Biol Chem 283:15390–15398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Espejo F, Green M, Preece NE, Assa-Munt N (2002) NMR assignment of human ASC2, a self contained protein interaction domain involved in apoptosis and inflammation. J Biomol NMR 23:151–152

    Article  CAS  PubMed  Google Scholar 

  98. Espejo F, Patarroyo ME (2006) Determining the 3D structure of human ASC2 protein involved in apoptosis and inflammation. Biochem Biophys Res Commun 340:860–864

    Article  CAS  PubMed  Google Scholar 

  99. Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL et al (2007) Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun 75:1484–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Bedoya F, Sandler LL, Harton JA (2007) Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 178:3837–3845

    Article  CAS  PubMed  Google Scholar 

  101. Atianand MK, Harton JA (2011) Uncoupling of Pyrin-only protein 2 (POP2)-mediated dual regulation of NF-κB and the inflammasome. J Biol Chem 286:40536–40547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL et al (2014) The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Porter KA, Duffy EB, Nyland P, Atianand MK, Sharifi H, Harton JA (2014) The CLRX.1/NOD24 (NLRP2P) pseudogene codes a functional negative regulator of NF-κB, pyrin-only protein 4. Genes Immun 15:392–403

    Article  CAS  PubMed  Google Scholar 

  104. Eberstadt M, Huang B, Olejniczak ET, Fesik SW (1997) The lymphoproliferation mutation in Fas locally unfolds the Fas death domain. Nat Struct Biol 4:983–985

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    Article  CAS  PubMed  Google Scholar 

  106. Park HH (2011) Structural analyses of death domains and their interactions. Apoptosis 16:209–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (GM071723, AI099009 and AR064349 to C.S., and AR057532 to A.D.) and the American Heart Association (12GRNT12080035 to C.S).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Dorfleutner or Christian Stehlik.

Additional information

Lan Hoang Chu and Anu Gangopadhyay have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, L.H., Gangopadhyay, A., Dorfleutner, A. et al. An updated view on the structure and function of PYRIN domains. Apoptosis 20, 157–173 (2015). https://doi.org/10.1007/s10495-014-1065-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1065-1

Keywords

Navigation