Skip to main content

Advertisement

Log in

Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Human Immunodeficiency Virus-1 (HIV-1) infection leads to CD4+ T cell depletion primarily by apoptosis employing both intrinsic and extrinsic pathways. Although extensive literature exists about the role of mitochondrial proteins in HIV induced T cell apoptosis, there is little understanding about the role of different components of mitochondrial oxidative phosphorylation (OXPHOS) system in apoptosis. The OXPHOS system comprises of five enzyme complexes (Complex I, II, III, IV, V), subunits of which have been implicated in various functions in addition to their primary role in energy generating process. Here using differential gene expression analysis, we report that Cytochrome Oxidase-II (COX-II), a subunit of Complex-IV is induced in HIV infected apoptotic T-cells. We also observe a temporal up regulation of this subunit across different T-cell lines and in human PBMCs. Further analysis indicates increase in expression of majority of Complex-IV subunits with concomitant increase in Complex-IV activity in HIV infected T cells. Silencing of COX-II expression leads to reduced apoptosis in infected T-cells, indicating its importance in apoptosis. Furthermore, our results also show that the activities of enzyme complexes I, II and III are decreased while those of Complex IV and V are increased at the time of acute infection and apoptosis. This differential regulation in activities of OXPHOS system complexes indicate a complex modulation of host cell energy generating system during HIV infection that ultimately leads to T cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OXPHOS:

Oxidative phosphorylation

BN-PAGE:

Blue native page

ADP:

Adenosine 5′-diphosphate

ATP:

Adenosine 5′-triphosphate

AZT:

Azidothymidine

MOI:

Multiplicity of infection

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide

PBMC:

Peripheral blood mononuclear cells

ROS:

Reactive oxygen species

MOMP:

Mitochondrial outer membrane potential

CcO:

Cytochrome c Oxidase

References

  1. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  CAS  PubMed  Google Scholar 

  2. Badley AD, Pilon AA, Landay A, Lynch DH (2000) Mechanisms of HIV-associated lymphocyte apoptosis. Blood 96:2951–2964

    CAS  PubMed  Google Scholar 

  3. Petit F, Arnoult D, Viollet L, Estaquier J (2003) Intrinsic and extrinsic pathways signaling during HIV-1 mediated cell death. Biochimie 85:795–811

    Article  CAS  PubMed  Google Scholar 

  4. Herbein G, Van Lint C, Lovett JL, Verdin E (1998) Distinct mechanisms trigger apoptosis in human immunodeficiency virus type 1-infected and in uninfected bystander T lymphocytes. J Virol 72:660–670

    CAS  PubMed  Google Scholar 

  5. Hazenberg MD, Hamann D, Schuitemaker H, Miedema F (2000) T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 1:285–289

    Article  CAS  PubMed  Google Scholar 

  6. Gougeon ML (2003) Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3:392–404

    Article  CAS  PubMed  Google Scholar 

  7. Wahl SM, Greenwell-Wild T, Peng G, Ma G, Orenstein JM, Vazquez N (2003) Viral and host cofactors facilitate HIV-1 replication in macrophages. J Leukoc Biol 74:726–735

    Article  CAS  PubMed  Google Scholar 

  8. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    Article  CAS  PubMed  Google Scholar 

  9. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–573

    Article  CAS  PubMed  Google Scholar 

  10. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, Teo W, Poeschla EM (2006) An essential role for LEDGF/p75 in HIV integration. Science 314:461–464

    Article  CAS  PubMed  Google Scholar 

  11. Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 99:11914–11919

    Article  CAS  PubMed  Google Scholar 

  12. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430

    Article  CAS  PubMed  Google Scholar 

  13. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372:363–365

    Article  CAS  PubMed  Google Scholar 

  14. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    Article  CAS  PubMed  Google Scholar 

  15. Wolf D, Goff SP (2008) Host restriction factors blocking retroviral replication. Annu Rev Genet 42:143–163

    Article  CAS  PubMed  Google Scholar 

  16. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    Article  CAS  PubMed  Google Scholar 

  17. Cossarizza A, Troiano L, Mussini C (2002) Mitochondria and HIV infection: the first decade. J Biol Regul Homeost Agents 16:18–24

    CAS  PubMed  Google Scholar 

  18. Macho A, Castedo M, Marchetti P, Aguilar JJ, Decaudin D, Zamzami N, Girard PM, Uriel J, Kroemer G (1995) Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus-1 carriers. Blood 86:2481–2487

    CAS  PubMed  Google Scholar 

  19. Cossarizza A, Mussini C, Mongiardo N, Borghi V, Sabbatini A, De Rienzo B, Franceschi C (1997) Mitochondria alterations and dramatic tendency to undergo apoptosis in peripheral blood lymphocytes during acute HIV syndrome. AIDS 11:19–26

    Article  CAS  PubMed  Google Scholar 

  20. Corbeil J, Sheeter D, Genini D, Rought S, Leoni L, Du P, Ferguson M, Masys DR, Welsh JB, Fink JL, Sasik R, Huang D, Drenkow J, Richman DD, Gingeras T (2001) Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11:1198–1204

    Article  CAS  PubMed  Google Scholar 

  21. Ladha JS, Tripathy MK, Mitra D (2005) Mitochondrial complex I activity is impaired during HIV-1-induced T-cell apoptosis. Cell Death Differ 12:1417–1428

    Article  CAS  PubMed  Google Scholar 

  22. Gervaix A, West D, Leoni LM, Richman DD, Wong-Staal F, Corbeil J (1997) A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci USA 94:4653–4658

    Article  CAS  PubMed  Google Scholar 

  23. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291

    CAS  PubMed  Google Scholar 

  24. Mitra D, Steiner M, Lynch DH, Staiano-Coico L, Laurence J (1996) HIV-1 upregulates Fas ligand expression in CD4+ T cells in vitro and in vivo: association with Fas-mediated apoptosis and modulation by aurintricarboxylic acid. Immunology 87:581–585

    Article  CAS  PubMed  Google Scholar 

  25. Ladha JS (2004) Studies on cellular factors associated with HIV-1 pathogenesis. Dissertation, University of Pune

  26. Mochizuki N, Otsuka N, Matsuo K, Shiino T, Kojima A, Kurata T, Sakai K, Yamamoto N, Isomura S, Dhole TN, Takebe Y, Matsuda M, Tatsumi M (1999) An infectious DNA clone of HIV type 1 subtype C. AIDS Res Hum Retroviruses 15:1321–1324

    Article  CAS  PubMed  Google Scholar 

  27. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  CAS  PubMed  Google Scholar 

  28. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  CAS  PubMed  Google Scholar 

  29. Schagger H (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol 260:190–202

    Article  CAS  PubMed  Google Scholar 

  30. Zerbetto E, Vergani L, Dabbeni-Sala F (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18:2059–2064

    Article  CAS  PubMed  Google Scholar 

  31. Barrientos A (2002) In vivo and in organello assessment of OXPHOS activities. Methods 26:307–316

    Article  CAS  PubMed  Google Scholar 

  32. Esposti MD (2001) Assessing functional integrity of mitochondria in vitro and in vivo. Methods Cell Biol 65:75–96

    Article  PubMed  Google Scholar 

  33. Kramer KA, Oglesbee D, Hartman SJ, Huey J, Anderson B, Magera MJ, Matern D, Rinaldo P, Robinson BH, Cameron JM, Hahn SH (2005) Automated spectrophotometric analysis of mitochondrial respiratory chain complex enzyme activities in cultured skin fibroblasts. Clin Chem 51:2110–2116

    Article  CAS  PubMed  Google Scholar 

  34. Kuhn-Nentwig L, Kadenbach B (1986) Isolation and characterization of human heart cytochrome c oxidase. J Bioenerg Biomembr 18:307–314

    Article  CAS  PubMed  Google Scholar 

  35. Roshal M, Zhu Y, Planelles V (2001) Apoptosis in AIDS. Apoptosis 6:103–116

    Article  CAS  PubMed  Google Scholar 

  36. Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M (2004) Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 1:12

    Article  PubMed  CAS  Google Scholar 

  37. Giacca M (2005) HIV-1 Tat, apoptosis and the mitochondria: a tubulin link? Retrovirology 2:7

    Article  PubMed  CAS  Google Scholar 

  38. Castedo M, Roumier T, Blanco J, Ferri KF, Barretina J, Tintignac LA, Andreau K, Perfettini JL, Amendola A, Nardacci R, Leduc P, Ingber DE, Druillennec S, Roques B, Leibovitch SA, Vilella-Bach M, Chen J, Este JA, Modjtahedi N, Piacentini M, Kroemer G (2002) Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J 21:4070–4080

    Article  CAS  PubMed  Google Scholar 

  39. Andersen JL, Zimmerman ES, DeHart JL, Murala S, Ardon O, Blackett J, Chen J, Planelles V (2005) ATR and GADD45alpha mediate HIV-1 Vpr-induced apoptosis. Cell Death Differ 12:326–334

    Article  CAS  PubMed  Google Scholar 

  40. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJ Jr (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900

    Article  CAS  PubMed  Google Scholar 

  41. Fukumori T, Akari H, Yoshida A, Fujita M, Koyama AH, Kagawa S, Adachi A (2000) Regulation of cell cycle and apoptosis by human immunodeficiency virus type 1 Vpr. Microbes Infect 2:1011–1017

    Article  CAS  PubMed  Google Scholar 

  42. Geiss GK, Bumgarner RE, An MC, Agy MB, van’t Wout AB, Hammersmark E, Carter VS, Upchurch D, Mullins JI, Katze MG (2000) Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266:8–16

    Article  CAS  PubMed  Google Scholar 

  43. van’t Wout AB, Lehrman GK, Mikheeva SA, O’Keeffe GC, Katze MG, Bumgarner RE, Geiss GK, Mullins JI (2003) Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4 (+)-T-cell lines. J Virol 77:1392–1402

    Article  CAS  Google Scholar 

  44. Otero A, Bustelo XR, Gomez-Marquez J (1991) Cytochrome c oxidase subunit II mRNA levels during T-lymphocyte proliferation and liver regeneration. Biochim Biophys Acta 1092:184–187

    Article  CAS  PubMed  Google Scholar 

  45. Sun Y, Lin H, Zhu Y, Ma C, Ye J, Luo J (2002) Induction or suppression of expression of cytochrome C oxidase subunit II by heregulin beta 1 in human mammary epithelial cells is dependent on the levels of ErbB2 expression. J Cell Physiol 192:225–233

    Article  CAS  PubMed  Google Scholar 

  46. Chandra D, Liu JW, Tang DG (2002) Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem 277:50842–50854

    Article  CAS  PubMed  Google Scholar 

  47. Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 5:147–162

    Article  CAS  PubMed  Google Scholar 

  48. Boerner JL, Demory ML, Silva C, Parsons SJ (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24:7059–7071

    Article  CAS  PubMed  Google Scholar 

  49. Chan EY, Qian WJ, Diamond DL, Liu T, Gritsenko MA, Monroe ME, Camp DG, Smith RD, Katze MG (2007) Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol 81:7571–7583

    Article  CAS  PubMed  Google Scholar 

  50. Ringrose JH, Jeeninga RE, Berkhout B, Speijer D (2008) Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J Virol 82:4320–4330

    Article  CAS  PubMed  Google Scholar 

  51. Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422

    Article  CAS  PubMed  Google Scholar 

  52. Brinkman K, Smeitink JA, Romijn JA, Reiss P (1999) Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 354:1112–1115

    Article  CAS  PubMed  Google Scholar 

  53. Gerschenson M, Brinkman K (2004) Mitochondrial dysfunction in AIDS and its treatment. Mitochondrion 4:763–777

    Article  CAS  PubMed  Google Scholar 

  54. Gerschenson M, Poirier MC (2000) Fetal patas monkeys sustain mitochondrial toxicity as a result of in utero zidovudine exposure. Ann NY Acad Sci 918:269–281

    Article  CAS  PubMed  Google Scholar 

  55. Wu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK (2008) Transcriptional profiles in CD8+ T cells from HIV+ progressors on HAART are characterized by coordinated up-regulation of oxidative phosphorylation enzymes and interferon responses. Virology 380:124–135

    Article  CAS  PubMed  Google Scholar 

  56. Cooper CE, Nicholls P, Freedman JA (1991) Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem Cell Biol 69:586–607

    Article  CAS  PubMed  Google Scholar 

  57. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  58. Arnold S, Kadenbach B (1999) The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosterically. FEBS Lett 443:105–108

    Article  CAS  PubMed  Google Scholar 

  59. Kadenbach B, Arnold S, Lee I, Huttemann M (2004) The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta 1655:400–408

    Article  CAS  PubMed  Google Scholar 

  60. Miro O, Lopez S, Martinez E, Pedrol E, Milinkovic A, Deig E, Garrabou G, Casademont J, Gatell JM, Cardellach F (2004) Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. Clin Infect Dis 39:710–716

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. G. C. Mishra, Director, NCCS for his support and constant encouragement. We thank J. S. Ladha, M. Kumar and Md. Zulfazal Ahmed for their technical help and the NCCS FACS core facility. We thank Dr. Islam Khan, NCL Pune for his help in spectrophotometric studies. This work was supported by Department of Biotechnology, Government of India. MKT is a Senior Research Fellow of Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, M.K., Mitra, D. Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications. Apoptosis 15, 28–40 (2010). https://doi.org/10.1007/s10495-009-0408-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0408-9

Keywords

Navigation