Skip to main content

Advertisement

Log in

Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

There is increasing evidence for bone-liver interplay. The main aim of this study was to determine serum sclerostin and Dickkopf (DKK)-1 levels in patients with nonalcoholic fatty liver disease (NAFLD) and their association with the disease severity. Patients with biopsy-proven NAFLD, 13 with nonalcoholic simple steatosis (SS) and 14 with steatohepatitis (NASH), and 20 gender-, age-, body mass index- and waist circumference-matched controls were enrolled. Serum sclerostin, DKK-1, bone turnover markers, vitamin D, insulin and standard biochemical and hematologic parameters were measured; lumbar spinal dual-energy X-ray absorptiometry was performed. We observed that there was a progressive decline in serum sclerostin levels from the controls (76.1 ± 6.8) to SS (53.5 ± 6.4) and NASH (46.0 ± 8.1 pmol/l) patients (p = 0.009); in adjusted pairwise comparisons, sclerostin was significantly higher in the controls than in NASH patients (p = 0.012). Although serum DKK-1 did not differ between groups (p = 0.135), there was a trend toward U-shaped distribution (controls 35.8 ± 2.8; SS 27.3 ± 2.9; NASH 36.8 ± 4.4 pmol/l). Higher DKK-1 levels were independently associated with NASH. Regarding specific histological lesions, DKK-1 levels were marginally lower in NAFLD patients with lower (≤33 %) than higher (>33 %) steatosis grade (27.7 ± 3.1 and 38.8 ± 4.7 pmol/l, respectively; p = 0.049). No other significant difference was observed within histological lesions. In conclusion, serum sclerostin levels were lower in NASH patients than in controls. DKK-1 levels were independently associated with NASH in NAFLD patients. The potential importance of these findings indicates a possible bone-liver interaction and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lazo M, Clark JM (2008) The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 28:339–350

    Article  PubMed  Google Scholar 

  2. Polyzos SA, Kountouras J, Zavos C (2009) Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 72:299–314

    Article  Google Scholar 

  3. Armstrong MJ, Adams LA, Canbay A, Syn WK (2014) Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology 59:1174–1197

    Article  CAS  PubMed  Google Scholar 

  4. Yilmaz Y (2012) Review article: non-alcoholic fatty liver disease and osteoporosis-clinical and molecular crosstalk. Aliment Pharmacol Ther 36:345–352

    Article  CAS  PubMed  Google Scholar 

  5. Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F (2013) Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol Med 19:522–535

    Article  CAS  PubMed  Google Scholar 

  6. Cui R, Sheng H, Rui XF, Cheng XY, Sheng CJ, Wang JY, Qu S (2013) Low bone mineral density in chinese adults with nonalcoholic fatty liver disease. Int J Endocrinol 2013:396545

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anastasilakis AD, Polyzos SA, Toulis KA (2011) Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes 18:383–388

    Article  CAS  PubMed  Google Scholar 

  8. Bhattoa HP, Wamwaki J, Kalina E, Foldesi R, Balogh A, Antal-Szalmas P (2013) Serum sclerostin levels in healthy men over 50 years of age. J Bone Miner Metab 31:579–584

    Article  CAS  PubMed  Google Scholar 

  9. Rossini M, Gatti D, Adami S (2013) Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132

    Article  CAS  PubMed  Google Scholar 

  10. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56:42–47

    Article  CAS  PubMed  Google Scholar 

  11. Gaudio A, Privitera F, Pulvirenti I, Canzonieri E, Rapisarda R, Fiore CE (2014) The relationship between inhibitors of the Wnt signalling pathway (sclerostin and dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. Diabetes Vasc Dis Res 11:48–52

    Article  CAS  Google Scholar 

  12. Manolagas SC, Almeida M (2007) Gone with the Wnts: β-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    Article  CAS  PubMed  Google Scholar 

  13. Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP (2007) LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smits MM, Ioannou GN, Boyko EJ, Utzschneider KM (2013) Non-alcoholic fatty liver disease as an independent manifestation of the metabolic syndrome: results of a US national survey in three ethnic groups. J Gastroenterol Hepatol 28:664–670

    Article  CAS  PubMed  Google Scholar 

  15. Polyzos SA, Kountouras J, Slavakis A, Zafeiriadou E, Patsiaoura K, Katsiki E, Zavos C, Papatheodorou A, Terpos E (2013) A novel noninvasive index for nonalcoholic steatohepatitis: a pilot study. Biomarkers 18:607–613

    Article  CAS  PubMed  Google Scholar 

  16. Kleiner DE, Brunt EM, Van NM, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  17. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  18. Polyzos SA, Mantzoros CS (2014) Necessity for timely noninvasive diagnosis of nonalcoholic fatty liver disease. Metabolism 63:161–167

    Article  CAS  PubMed  Google Scholar 

  19. Rhee Y, Kim WJ, Han KJ, Lim SK, Kim SH (2014) Effect of liver dysfunction on circulating sclerostin. J Bone Miner Metab 32:542–549

    Article  Google Scholar 

  20. González-Reimers E, Martín-González C, de la Vega-Prieto MJ, Pelazas-González R, Fernández-Rodríguez C, López-Prieto J, Alvisa-Negrín J, Santolaria-Fernández F (2013) Serum sclerostin in alcoholics: a pilot study. Alcohol Alcohol 48:278–282

    Article  PubMed  Google Scholar 

  21. González-Reimers E, López-Prieto J, Pelazas-González R, Alemán-Valls MR, José de la Vega-Prieto M, Jorge-Ripper C, Durán-Castellón MC, Santolaria-Fernández F (2014) Serum sclerostin in hepatitis C virus infected patients. J Bone Metab 21:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sapir-Koren R, Livshits G (2014) Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporos Int 25:2685–2700

    Article  CAS  PubMed  Google Scholar 

  23. Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y (2003) Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res 21:511–520

    Article  CAS  PubMed  Google Scholar 

  24. Lau KH, Baylink DJ, Zhou XD, Rodriguez D, Bonewald LF, Li Z, Ruffoni D, Müller R, Kesavan C, Sheng MH (2013) Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab 305:E271–E281

    Article  CAS  PubMed  Google Scholar 

  25. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320

    Article  CAS  PubMed  Google Scholar 

  26. Anastasilakis AD, Polyzos SA, Gkiomisi A, Bisbinas I, Gerou S, Makras P (2013) Comparative effect of zoledronic acid versus denosumab on serum sclerostin and dickkopf-1 levels of naive postmenopausal women with low bone mass: a randomized, head-to-head clinical trial. J Clin Endocrinol Metab 98:3206–3212

    Article  CAS  PubMed  Google Scholar 

  27. Polyzos SA, Kountouras J, Zavos C, Deretzi G (2012) Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol 46:272–284

    Article  PubMed  Google Scholar 

  28. Lattanzio S, Santilli F, Liani R, Vazzana N, Ueland T, Di Fulvio P, Formoso G, Consoli A, Aukrust P, Davi G (2014) Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. J Am Heart Assoc. doi:10.1161/JAHA.114.001000

    Google Scholar 

  29. Garcia-Martin A, Reyes-Garcia R, Garcia-Fontana B, Morales-Santana S, Coto-Montes A, Munoz-Garach M, Rozas-Moreno P, Munoz-Torres M (2014) Relationship of dickkopf1 (DKK1) with cardiovascular disease and bone metabolism in Caucasian type 2 diabetes mellitus. PLoS One 9:e111703

    Article  PubMed  PubMed Central  Google Scholar 

  30. Freese JL, Pino D, Pleasure SJ (2010) Wnt signaling in development and disease. Neurobiol Dis 38:148–153

    Article  CAS  PubMed  Google Scholar 

  31. Liang L, He H, Lv R, Zhang M, Huang H, An Z, Li S (2015) Preliminary mechanism on the methylation modification of Dkk-1 and Dkk-3 in hepatocellular carcinoma. Tumour Biol 36:1245–1250

    Article  CAS  PubMed  Google Scholar 

  32. Ertle J, Dechene A, Sowa JP, Penndorf V, Herzer K, Kaiser G, Schlaak JF, Gerken G, Syn WK, Canbay A (2011) Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 128:2436–2443

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Chen GD, Fang F, Liu Z, Lau SH, Zhang JF, Lau WY, Yang LY (2013) Dickkopf-1: as a diagnostic and prognostic serum marker for early hepatocellular carcinoma. Int J Biol Markers 28:286–297

    Article  CAS  PubMed  Google Scholar 

  34. Moon SS, Lee YS, Kim SW (2012) Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 42:423–429

    Article  CAS  PubMed  Google Scholar 

  35. Pardee PE, Dunn W, Schwimmer JB (2012) Non-alcoholic fatty liver disease is associated with low bone mineral density in obese children. Aliment Pharmacol Ther 35:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Xu Y, Xu M, Ma L, Wang T, Liu Y, Dai M, Chen Y, Lu J, Liu J, Bi Y, Ning G (2012) Association between nonalcoholic fatty liver disease (NAFLD) and osteoporotic fracture in middle-aged and elderly Chinese. J Clin Endocrinol Metab 97:2033–2038

    Article  CAS  PubMed  Google Scholar 

  37. Purnak T, Beyazit Y, Ozaslan E, Efe C, Hayretci M (2012) The evaluation of bone mineral density in patients with nonalcoholic fatty liver disease. Wien Klin Wochenschr 124:526–531

    Article  CAS  PubMed  Google Scholar 

  38. Kaya M, Işık D, Beştaş R, Evliyaoğlu O, Akpolat V, Büyükbayram H, Kaplan MA (2013) Increased bone mineral density in patients with non-alcoholic steatohepatitis. World J Hepatol 5:627–634

    PubMed  PubMed Central  Google Scholar 

  39. Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women—the six-month effect of risedronate and teriparatide. Osteoporos Int 23:1171–1176

    Article  CAS  PubMed  Google Scholar 

  40. Paccou J, Mentaverri R, Renard C, Liabeuf S, Fardellone P, Massy ZA, Brazier M, Kamel S (2014) The relationships between serum sclerostin, bone mineral density and vascular calcification in rheumatoid arthritis. J Clin Endocrinol Metab 99:4740–4748

    Article  CAS  PubMed  Google Scholar 

  41. Voskaridou E, Christoulas D, Plata E, Bratengeier C, Anastasilakis AD, Komninaka V, Kaliontzi D, Gkotzamanidou M, Polyzos SA, Dimopoulou M, Terpos E (2012) High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm Metab Res 44:909–913

    Article  CAS  PubMed  Google Scholar 

  42. Musso G (2012) Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42:237–239

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios A. Polyzos.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyzos, S.A., Anastasilakis, A.D., Kountouras, J. et al. Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease. J Bone Miner Metab 34, 447–456 (2016). https://doi.org/10.1007/s00774-015-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0687-x

Keywords

Navigation