Skip to main content
Log in

eIF5A has a function in the cotranslational translocation of proteins into the ER

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential function in translation elongation, the critical role played by eIF5A remains unclear. In addition to demonstrating genetic interactions with translation factors, eIF5A mutants genetically interact with mutations in YPT1, which encodes an essential protein involved in endoplasmic reticulum (ER)-to-Golgi vesicle transport. In this study, we investigated the correlation between the function of eIF5A in translation and secretion in yeast. The results of in vivo translocation assays and genetic interaction analyses suggest a specific role for eIF5A in the cotranslational translocation of proteins into the ER, but not in the posttranslational pathway. Additionally, we observed that a block in eIF5A activation up-regulates stress-induced chaperones, which also occurs when SRP function is lost. Finally, loss of eIF5A function affects binding of the ribosome-nascent chain complex to SRP. These results link eIF5A function in translation with a role of SRP in the cell and may help explain the dual effects of eIF5A in differential and general translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

eIF5A:

Eukaryotic translation initiation factor 5A

TIF51A :

Gene encoding eIF5A in yeast

eEF2:

Eukaryotic translation elongation factor 2

EFT2 :

Gene encoding eEF2 in yeast

eEF1A:

Eukaryotic translation elongation factor 1A

EF-P:

Elongation factor P

SRP:

Signal recognition particle

ER:

Endoplasmic reticulum

RNC:

Ribosome-nascent chain

CPY:

Carboxypeptidase Y

DPAP B:

Dipeptidyl aminopeptidase B

References

  • Albanèse V, Yam AY, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124(1):75–88. doi:10.1016/j.cell.2005.11.039

    PubMed  Google Scholar 

  • Arnold CE, Wittrup KD (1994) The stress response to loss of signal recognition particle function in Saccharomyces cerevisiae. J Biol Chem 269(48):30412–30418

    CAS  PubMed  Google Scholar 

  • Bailly M, de Crécy-Lagard V (2010) Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol Direct 5:3. doi:10.1186/1745-6150-5-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Benne R, Hershey JW (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253(9):3078–3087

    CAS  PubMed  Google Scholar 

  • Brodsky JL (1998) Translocation of proteins across the endoplasmic reticulum membrane. Int Rev Cytol 178:277–328

    Article  CAS  PubMed  Google Scholar 

  • Bullwinkle TJ, Zou SB, Rajkovic A, Hersch SJ, Elgamal S, Robinson N, Smil D, Bolshan Y, Navarre WW, Ibba M (2012) (R)-β-lysine modified elongation factor P functions in translation elongation. J Biol Chem. doi:10.1074/jbc.M112.438879

    PubMed  Google Scholar 

  • Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6(3):105–109

    Article  CAS  PubMed  Google Scholar 

  • Dalley JA, Selkirk A, Pool MR (2008) Access to ribosomal protein Rpl25p by the signal recognition particle is required for efficient cotranslational translocation. Mol Biol Cell 19(7):2876–2884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dias CA, Cano VS, Rangel SM, Apponi LH, Frigieri MC, Muniz JR, Garcia W, Park MH, Garratt RC, Zanelli CF, Valentini SR (2008) Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. FEBS J 275(8):1874–1888

    CAS  PubMed  Google Scholar 

  • Dias CA, Gregio AP, Rossi D, Galvão FC, Watanabe TF, Park MH, Valentini SR, Zanelli CF (2012) eIF5A interacts functionally with eEF2. Amino Acids 42(2–3):697–702. doi:10.1007/s00726-011-0985-0

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dias CA, Garcia W, Zanelli CF, Valentini SR (2013) eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer. Amino Acids 44(2):631–644. doi:10.1007/s00726-012-1387-7

    CAS  PubMed  Google Scholar 

  • Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339(6115):85–88. doi:10.1126/science.1229017

    CAS  PubMed  Google Scholar 

  • Frey S, Pool M, Seedorf M (2001) Scp160p, an RNA-binding, polysome-associated protein, localizes to the endoplasmic reticulum of Saccharomyces cerevisiae in a microtubule-dependent manner. J Biol Chem 276(19):15905–15912

    CAS  PubMed  Google Scholar 

  • Frigieri MC, Thompson GM, Pandolfi JR, Zanelli CF, Valentini SR (2007) Use of a synthetic lethal screen to identify genes related to TIF51A in Saccharomyces cerevisiae. Genet Mol Res 6(1):152–165

    CAS  PubMed  Google Scholar 

  • Frigieri MC, Joao Luiz MV, Apponi LH, Zanelli CF, Valentini SR (2008) Synthetic lethality between eIF5A and Ypt1 reveals a connection between translation and the secretory pathway in yeast. Mol Genet Genomics 280(3):211–221

    CAS  PubMed  Google Scholar 

  • Galvão FC, Rossi D, Silveira Wa S, Valentini SR, Zanelli CF (2013) The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 8(4):e60140. doi:10.1371/journal.pone.0060140

    PubMed Central  PubMed  Google Scholar 

  • Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 380(4):785–790

    CAS  PubMed  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics. Academic Press, New York

    Google Scholar 

  • Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R (2004) Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427(6977):808–814. doi:10.1038/nature02342

    CAS  PubMed  Google Scholar 

  • Halic M, Gartmann M, Schlenker O, Mielke T, Pool MR, Sinning I, Beckmann R (2006) Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312(5774):745–747

    CAS  PubMed  Google Scholar 

  • Hersch SJ, Wang M, Zou SB, Moon KM, Foster LJ, Ibba M, Navarre WW (2013) Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. MBio 4(2):e00180-13. doi:10.1128/mBio.00180-13

  • Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97(3):583–598

    CAS  PubMed  Google Scholar 

  • Li Z, Vizeacoumar FJ, Bahr S, Li J, Warringer J, Vizeacoumar FS, Min R, Vandersluis B, Bellay J, Devit M, Fleming JA, Stephens A, Haase J, Lin ZY, Baryshnikova A, Lu H, Yan Z, Jin K, Barker S, Datti A, Giaever G, Nislow C, Bulawa C, Myers CL, Costanzo M, Gingras AC, Zhang Z, Blomberg A, Bloom K, Andrews B, Boone C (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29(4):361–367. doi:10.1038/nbt.1832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorsch J (ed) (2007) Translation initiation: extract systems and molecular genetics In: Methods in enzymology, vol 429. Elsevier, San Diego, CA

  • Marra M, Agostinelli E, Tempera G, Lombardi A, Meo G, Budillon A, Abbruzzese A, Giuberti G, Caraglia M (2007) Anticancer drugs and hyperthermia enhance cytotoxicity induced by polyamine enzymatic oxidation products. Amino Acids 33(2):273–281

    CAS  PubMed  Google Scholar 

  • Mason N, Ciufo LF, Brown JD (2000) Elongation arrest is a physiologically important function of signal recognition particle. EMBO J 19(15):4164–4174

    CAS  PubMed  Google Scholar 

  • Mutka SC, Walter P (2001) Multifaceted physiological response allows yeast to adapt to the loss of the signal recognition particle-dependent protein-targeting pathway. Mol Biol Cell 12(3):577–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba M, Fang FC (2010) PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 39(2):209–221. doi:10.1016/j.molcel.2010.06.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269–278

    CAS  PubMed  Google Scholar 

  • Ogg SC, Walter P (1995) SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81(7):1075–1084

    CAS  PubMed  Google Scholar 

  • Ortiz PA, Kinzy TG (2005) Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast. Nucleic Acids Res 33(18):5740–5748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2):491–500. doi:10.1007/s00726-009-0408-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JH, Johansson HE, Aoki H, Huang BX, Kim HY, Ganoza MC, Park MH (2012) Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 287(4):2579–2590. doi:10.1074/jbc.M111.309633

    CAS  PubMed  Google Scholar 

  • Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat Chem Biol 7(10):667–669. doi:10.1038/nchembio.632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459(7243):118–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11(6):3105–3114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segev N (2001) Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001 (100):RE11

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65(3):363–366

    CAS  PubMed  Google Scholar 

  • Stirling CJ, Rothblatt J, Hosobuchi M, Deshaies R, Schekman R (1992) Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol Biol Cell 3(2):129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339(6115):82–85. doi:10.1126/science.1228985

    CAS  PubMed  Google Scholar 

  • Valentini SR, Casolari JM, Oliveira CC, Silver PA, McBride AE (2002) Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly (A)-binding protein and protein kinase C signaling. Genetics 160(2):393–405

    CAS  PubMed  Google Scholar 

  • Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S (2010) A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17(9):1136–1143. doi:10.1038/nsmb.1889

    CAS  PubMed  Google Scholar 

  • Zanelli CF, Valentini SR (2005) Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 171(4):1571–1581

    CAS  PubMed  Google Scholar 

  • Zanelli CF, Valentini S (2007) Is there a role for eIF5A in translation? Amino Acids 33(2):351–358

    CAS  PubMed  Google Scholar 

  • Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR (2006) eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun 348(4):1358–1366

    CAS  PubMed  Google Scholar 

  • Zhang D, Sweredoski MJ, Graham RL, Hess S, Shan SO (2012) Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis. Mol Cell Proteomics 11(2):M111.011585. doi:10.1074/mcp.M111.011585

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Colin Stirling (University of Newcastle, Newcastle, United Kingdom), Martin Pool (Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom) and Davis Ng (Biological Science, National University of Singapore, Singapore) for their generous gifts of strains, plasmids, and antibodies. This work was supported by grants to S R V and C F Z from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and PADC from the Faculdade de Ciências Farmacêuticas, UNESP. We also thank the FAPESP for fellowships awarded to most of the authors.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleslei Fernando Zanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, D., Galvão, F.C., Bellato, H.M. et al. eIF5A has a function in the cotranslational translocation of proteins into the ER. Amino Acids 46, 645–653 (2014). https://doi.org/10.1007/s00726-013-1618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1618-6

Keywords

Navigation