Skip to main content

Advertisement

Log in

Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0−12 hour post inoculation (hpi) while at 20−24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8−12 hpi. At 20−24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400

    Article  CAS  PubMed  Google Scholar 

  2. Welte M (2004) Bidirectional transport along microtubules. Curr Biol 14:R525–R537

    Article  CAS  PubMed  Google Scholar 

  3. Dodding MP, Way M (2011) Coupling viruses to dynein and kinesin-1. EMBO J 30:3527–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Döhner K, Nagel C-H, Sodeik B (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13:320–327

    Article  PubMed  Google Scholar 

  5. Hall J, Hall A, Pursifull N, Barbar E (2008) Differences in dynamic structure of LC8 monomer, dimer, and dimer-peptide complexes. Biochemistry 47:11940–11952

    Article  CAS  PubMed  Google Scholar 

  6. Rapali P, Szenes Á, Radnai L, Bakos A, Pál G, Nyitray L (2011) DYNLL/LC8: A light chain subunit of the dynein motor complex and beyond. FEBS J 278:2980–2996

    Article  CAS  PubMed  Google Scholar 

  7. Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G (2011) Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 6:e18818

  8. Alonso C, Miskin J, Hernaez B, Fernandez-Zapatero P, Soto L, Canto C, Rodriguez-Crespo I, Dixon L, Escribano JM (2001) African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75:9819–9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hernáez B, Diaz-Gil G, Garcia-Gallo M, Ignacio Quetglas J, Rodriguez-Crespo I, Dixon L, Escribano JM, Alonso C (2004) The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett 569:224–228

    Article  PubMed  Google Scholar 

  10. Poisson N, Real E, Gaudin Y, Vaney MC, King S, Jacob Y, Tordo N, Blondel D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82:2691–2696

    Article  CAS  PubMed  Google Scholar 

  11. Moseley GW, Roth DM, DeJesus MA, Leyton DL, Filmer RP, Pouton CW, Jans DA (2007) Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 18:3204–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith JG, Wiethoff CM, Stewart PL, Nemerow GR (2010) Adenovirus. Curr Top Microbiol Immunol 343:195–224

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Segales J, Allan G, Domingo M (2005) Porcine circovirus diseases. Anim Health Res Rev 6:119–142

    Article  PubMed  Google Scholar 

  14. Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M (2012) Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals protein and pathway regulation in porcine circovirus type 2 infected PK-15 cells. J Proteome Res 11:995–1008

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y (2009) Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 8:5111–5119

    Article  CAS  PubMed  Google Scholar 

  16. Cheng S, Zhang M, Li W, Wang Y, Liu Y, He Q (2012) Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J Proteomics 75:3258–3269

    Article  CAS  PubMed  Google Scholar 

  17. Cao J, Lin C, Wang H, Wang L, Zhou N, Jin Y, Liao M, Zhou J (2015) Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 89:2777–2791

    Article  PubMed  Google Scholar 

  18. Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS (1998) Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36:2535–2541

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ (2004) Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78:8135–8145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jantafong T, Boonsoongnern A, Poolperm P, Urairong K, Lekcharoensuk C, Lekcharoensuk P (2011) Genetic characterization of porcine circovirus type 2 in piglets from PMWS-affected and -negative farms in Thailand. Virol J 28:88

    Article  Google Scholar 

  21. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  22. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolte S, Cordelieres P (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin D, Chang JH, Lindquist R, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  PubMed Central  Google Scholar 

  25. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  26. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Proc 5:725–738

    Article  CAS  Google Scholar 

  27. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  29. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirosue S, Senn K, Clément N, Nonnenmacher M, Gigout L, Linden RM, Weber T (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology 367:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suikkanen S, Aaltonen T, Nevalainen M, Välilehto O, Lindholm L, Vuento M, Vihinen-Ranta M (2003) Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J Virol 77:10270–10279

  32. Chu JJ, Ng NL (2002) Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67:127–136

    Article  CAS  PubMed  Google Scholar 

  33. Jacob Y, Badrane H, Ceccaldi PE, Tordo N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217–10222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su Y, Qiao W, Guo T, Tan J, Li Z, Chen Y, Li X, Li Y, Zhou J, Chen Q (2010) Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell Microbiol 12:1098–1107

    Article  CAS  PubMed  Google Scholar 

  35. Gaudin R, Alencar BC, De Arhel N, Benaroch P (2013) HIV trafficking in host cells: motors wanted! Trends Cell Biol 23:652–662

    Article  CAS  PubMed  Google Scholar 

  36. Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ (2009) Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 139:1–9

    Article  CAS  PubMed  Google Scholar 

  37. Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Moreno M, Navarro-Lerida I, Roncal F, Albar JP, Alonso C, Gavilanes F, Rodriguez-Crespo I (2003) Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544:262–267

    Article  CAS  PubMed  Google Scholar 

  39. Kubota T, Matsuoka M, Chang TH, Bray M, Jones S, Tashiro M, Kato A, Ozato K (2009) Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. J Virol 83:6952–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang J, Jaffrey SR, Guo W, Snyder SH, Clardy J (1999) Structure of the PIN/LC8 dimer with a bound peptide. Nat Struct Biol 6:735–740

    Article  CAS  PubMed  Google Scholar 

  41. Fan J, Zhang Q, Tochio H, Li M, Zhang M (2001) Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J Mol Biol 306:97–108

    Article  CAS  PubMed  Google Scholar 

  42. Lightcap CM, Sun S, Lear JD, Rodeck U, Polenova T, Williams JC (2008) Biochemical and structural characterization of the Pak1–LC8 interaction. J Biol Chem 283:27314–27324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, Johnson JE (2011) The 2.3-Angstrom Structure of Porcine Circovirus 2. J Virol 8:7856–7862

    Article  Google Scholar 

  44. Hall J, Karplus PA, Barbar E (2009) Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem 284:33115–33121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barbar E (2008) New concepts dynein light chain LC8 is a dimerization hub essential in diverse. Biochemistry 47:1–6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Prem S Paul at the University of Nebraska and Dr. Igor Morozov at Kansas State University for providing the plasmid p31/31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Porntippa Lekcharoensuk.

Ethics declarations

Funding

This study was funded by the Thailand Research Fund (Grant Number RSA 55080036).

Conflict of interest

Sirin Theerawatanasirikul declares that she has no conflict of interest. Nantawan Phecharat declares that she has no conflict of interest. Chaiwat Prawettongsopon declares that he has no conflict of interest. Wanpen Chaicumpa declares that she has no conflict of interest. Porntippa Lekcharoensuk declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theerawatanasirikul, S., Phecharat, N., Prawettongsopon, C. et al. Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules. Arch Virol 162, 677–686 (2017). https://doi.org/10.1007/s00705-016-3140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3140-0

Keywords

Navigation