Skip to main content
Log in

Cytoskeletal and signaling mechanisms of neurite formation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The formation of a neurite, the basis for axons and dendrites, begins with the concerted accumulation and organization of actin and microtubules. Whereas much is known about the proteins that play a role in these processes, because they perform similar functions in axon branching and filopodia formation, much remains to be discovered concerning the interaction of these individual cytoskeletal regulators during neurite formation. Here, we review the literature regarding various models of filopodial formation and the way in which proteins that control actin organization and polymerization induce neurite formation. Although several different regulators of actin polymerization are involved in neurite initiation, redundancy occurs between these regulators, as the effects of the loss of a single regulator can be mitigated by the addition of neurite-promoting substrates and proteins. Similar to actin dynamics, both microtubule stabilizing and destabilizing proteins play a role in neurite initiation. Furthermore, interactions between the actin and microtubule cytoskeleton are required for neurite formation. Several lines of evidence indicate that the interactions between these two components of the cytoskeleton are needed for force generation and for the localization of microtubules at sites of nascent neurites. The general theme that emerges is the existence of several central regulatory pathways on which extracellular cues converge to control and organize both actin and microtubules to induce the formation of neurites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akin O, Mullins RD (2008) Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133:841–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albertinazzi C, Gilardelli D, Paris S, Longhi R, de Curtis I (1998) Overexpression of a neural-specific rho family GTPase, cRac1B, selectively induces enhanced neuritogenesis and neurite branching in primary neurons. J Cell Biol 142:815–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aletta JM (1996) Phosphorylation of type III beta-tubulin PC12 cell neurites during NGF-induced process outgrowth. J Neurobiol 31:461–475

    CAS  PubMed  Google Scholar 

  • Allen MJ, Shan X, Murphey RK (2000) A role for Drosophila Drac1 in neurite outgrowth and synaptogenesis in the giant fiber system. Mol Cell Neurosci 16:754–765

    CAS  PubMed  Google Scholar 

  • Aoki K, Nakamura T, Matsuda M (2004) Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279:713–719

    CAS  PubMed  Google Scholar 

  • Aoki K, Nakamura T, Fujikawa K, Matsuda M (2005) Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells. Mol Biol Cell 16:2207–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aspenstrom P (2009) Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. Int Rev Cell Mol Biol 272:1–31

    PubMed  Google Scholar 

  • Banker G, Goslin K (1988) Developments in neuronal cell culture. Nature 336:185–186

    CAS  PubMed  Google Scholar 

  • Bazellieres E, Massey-Harroche D, Barthelemy-Requin M, Richard F, Arsanto JP, Le Bivic A (2012) Apico-basal elongation requires a drebrin-E-EB3 complex in columnar human epithelial cells. J Cell Sci 125:919–931

    CAS  PubMed  Google Scholar 

  • Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122:1947–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BW, Bamburg JR (2003) Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci 23:1–6

    CAS  PubMed  Google Scholar 

  • Biou V, Brinkhaus H, Malenka RC, Matus A (2008) Interactions between drebrin and Ras regulate dendritic spine plasticity. Eur J Neurosci 27:2847–2859

    PubMed  Google Scholar 

  • Breitsprecher D, Kiesewetter AK, Linkner J, Urbanke C, Resch GP, Small JV, Faix J (2008) Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J 27:2943–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugg B, Reddy D, Matus A (1993) Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth. Neuroscience 52:489–496

    CAS  PubMed  Google Scholar 

  • Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P et al (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14:1002–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres A, Ye B, Dotti CG (2012) Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 24:547–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson BR, Lloyd KE, Kruszewski A, Kim IH, Rodriguiz RM, Heindel C, Faytell M, Dudek SM, Wetsel WC, Soderling SH (2011) WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. J Neurosci 31:2447–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carnahan RH, Gould KL (2003) The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 162:851–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courchet J, Lewis TL Jr, Lee S, Courchet V, Liou DY, Aizawa S, Polleux F (2013) Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153:1510–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Creed SJ, Desouza M, Bamburg JR, Gunning P, Stehn J (2011) Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp Cell Res 317:249–261

    CAS  PubMed  Google Scholar 

  • Curthoys NM, Freittag H, Connor A, Desouza M, Brettle M, Poljak A, Hall A, Hardeman E, Schevzov G, Gunning PW et al (2013) Tropomyosins induce neuritogenesis and determine neurite branching patterns in B35 neuroblastoma cells. Mol Cell Neurosci 58C:11–21

    Google Scholar 

  • Da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704

    PubMed  Google Scholar 

  • Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162:1267–1279

    PubMed  PubMed Central  Google Scholar 

  • Dehmelt L, Halpain S (2004) Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 58:18–33

    CAS  PubMed  Google Scholar 

  • Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23:9479–9490

    CAS  PubMed  Google Scholar 

  • Dehmelt L, Nalbant P, Steffen W, Halpain S (2006) A microtubule-based, dynein-dependent force induces local cell protrusions: implications for neurite initiation. Brain Cell Biol 35:39–56

    CAS  PubMed  Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J et al (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9:1347–1359

    CAS  PubMed  Google Scholar 

  • Derivery E, Gautreau A (2010) Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. BioEssays 32:119–131

    CAS  PubMed  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  • Dun XP, Chilton JK (2010) Control of cell shape and plasticity during development and disease by the actin-binding protein Drebrin. Histol Histopathol 25:533–540

    CAS  PubMed  Google Scholar 

  • Dun XP, Bandeira de Lima T, Allen J, Geraldo S, Gordon-Weeks P, Chilton JK (2012) Drebrin controls neuronal migration through the formation and alignment of the leading process. Mol Cell Neurosci 49:341–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emery AC, Eiden MV, Eiden LE (2014) Separate cyclic AMP sensors for neuritogenesis, growth arrest, and survival of neuroendocrine cells. J Biol Chem 289:10126–10139

    CAS  PubMed  Google Scholar 

  • Endo M, Ohashi K, Mizuno K (2007) LIM kinase and slingshot are critical for neurite extension. J Biol Chem 282:13692–13702

    CAS  PubMed  Google Scholar 

  • Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Filopodia: complex models for simple rods. Int J Biochem Cell Biol 41:1656–1664

    CAS  PubMed  Google Scholar 

  • Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, Dupraz S, Stern S, Garvalov BK, Gurniak C, Shaw AE et al (2012) ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76:1091–1107

    CAS  PubMed  Google Scholar 

  • Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423

    CAS  PubMed  Google Scholar 

  • Gallo G (2010) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71:201–220

    Google Scholar 

  • Gartner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, Valtorta F, Dotti CG (2012) N-cadherin specifies first asymmetry in developing neurons. EMBO J 31:1893–1903

    PubMed  PubMed Central  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10:1181–1189

    CAS  PubMed  Google Scholar 

  • Goldberg DJ, Burmeister DW (1992) Microtubule-based filopodium-like protrusions form after axotomy. J Neurosci 12:4800–4807

    CAS  PubMed  Google Scholar 

  • Gonzalez-Billault C, Munoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A (2012) The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 69:464–485

    CAS  Google Scholar 

  • Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K, Jin WL, Frost A, Polleux F (2009) The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunning P (2008) Emerging issues for tropomyosin structure, regulation, function and pathology. Adv Exp Med Biol 644:293–298

    CAS  PubMed  Google Scholar 

  • Gupton SL, Gertler FB (2010) Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell 18:725–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gysbers JW, Rathbone MP (1996a) GTP and guanosine synergistically enhance NGF-induced neurite outgrowth from PC12 cells. Int J Dev Neurosci 14:19–34

    CAS  PubMed  Google Scholar 

  • Gysbers JW, Rathbone MP (1996b) Neurite outgrowth in PC12 cells is enhanced by guanosine through both cAMP-dependent and -independent mechanisms. Neurosci Lett 220:175–178

    CAS  PubMed  Google Scholar 

  • Gysbers JW, Guarnieri S, Mariggio MA, Pietrangelo T, Fano G, Rathbone MP (2000) Extracellular guanosine 5′ triphosphate enhances nerve growth factor-induced neurite outgrowth via increases in intracellular calcium. Neuroscience 96:817–824

    CAS  PubMed  Google Scholar 

  • Haarer BK, Lillie SH, Adams AE, Magdolen V, Bandlow W, Brown SS (1990) Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J Cell Biol 110:105–114

    CAS  PubMed  Google Scholar 

  • Haugwitz M, Noegel AA, Karakesisoglou J, Schleicher M (1994) Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79:303–314

    CAS  PubMed  Google Scholar 

  • Hayashi K, Ishikawa R, Ye LH, He XL, Takata K, Kohama K, Shirao T (1996) Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. J Neurosci 16:7161–7170

    CAS  PubMed  Google Scholar 

  • Heath RJ, Insall RH (2008) F-BAR domains: multifunctional regulators of membrane curvature. J Cell Sci 121:1951–1954

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Hayashi K, Shirao T, Xue Y, Takagi T, Sasaki Y, Kohama K (1994) Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269:29928–29933

    CAS  PubMed  Google Scholar 

  • Izawa I, Amano M, Chihara K, Yamamoto T, Kaibuchi K (1998) Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17:2863–2871

    CAS  PubMed  Google Scholar 

  • Jackson TR, Blader IJ, Hammonds-Odie LP, Burga CR, Cooke F, Hawkins PT, Wolf AG, Heldman KA, Theibert AB (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase. J Cell Sci 109:289–300

    CAS  PubMed  Google Scholar 

  • Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663–C675

    CAS  PubMed  Google Scholar 

  • Joshi HC, Cleveland DW (1989) Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol 109:663–673

    CAS  PubMed  Google Scholar 

  • Kang F, Purich DL, Southwick FS (1999) Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J Biol Chem 274:36963–36972

    CAS  PubMed  Google Scholar 

  • Katoh H, Aoki J, Yamaguchi Y, Kitano Y, Ichikawa A, Negishi M (1998) Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 273:28700–28707

    CAS  PubMed  Google Scholar 

  • Ketschek A, Gallo G (2010) Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 30:12185–12197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ketschek AR, Jones SL, Gallo G (2007) Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. Dev Neurobiol 67:1305–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80:266–276

    CAS  PubMed  Google Scholar 

  • Knoops B, Octave JN (1997) Alpha 1-tubulin mRNA level is increased during neurite outgrowth of NG 108–15 cells but not during neurite outgrowth inhibition by CNS myelin. Neuroreport 8:795–798

    CAS  PubMed  Google Scholar 

  • Kollins KM, Hu J, Bridgman PC, Huang YQ, Gallo G (2009) Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol 69:279–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korobova F, Svitkina T (2008) Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell 19:1561–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, Mebane LM, Philippar U, Pinheiro EM, Burds AA et al (2007) Ena/VASP is required for neuritogenesis in the developing cortex. Neuron 56:441–455

    CAS  PubMed  Google Scholar 

  • Lee K, Gallop JL, Rambani K, Kirschner MW (2010) Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329:1341–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letourneau PC, Ressler AH (1984) Inhibition of neurite initiation and growth by taxol. J Cell Biol 98:1355–1362

    CAS  PubMed  Google Scholar 

  • Letourneau PC, Wire JP (1995) Three-dimensional organization of stable microtubules and the Golgi apparatus in the somata of developing chick sensory neurons. J Neurocytol 24:207–223

    CAS  PubMed  Google Scholar 

  • Li YH, Ghavampur S, Bondallaz P, Will L, Grenningloh G, Puschel AW (2009) Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem 284:363–371

    CAS  PubMed  Google Scholar 

  • Lin W, Szaro BG (1996) Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis. Dev Biol 179:197–211

    CAS  PubMed  Google Scholar 

  • Lindenbaum MH, Carbonetto S, Grosveld F, Flavell D, Mushynski WE (1988) Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem 263:5662–5667

    CAS  PubMed  Google Scholar 

  • Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI (2013) Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol 23:1018–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart BW, Zhang W, Wayman GA, Kwon CH, Westbrook GL, Parada LF (2008) Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling. J Neurosci 28:7006–7012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mai J, Fok L, Gao H, Zhang X, Poo MM (2009) Axon initiation and growth cone turning on bound protein gradients. J Neurosci 29:7450–7458

    CAS  PubMed  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev 9:446–454

    CAS  Google Scholar 

  • Mattson MP, Partin J (1999) Evidence for mitochondrial control of neuronal polarity. J Neurosci Res 56:8–20

    CAS  PubMed  Google Scholar 

  • Matus A, Delhaye-Bouchaud N, Mariani J (1990) Microtubule-associated protein 2 (MAP2) in Purkinje cell dendrites: evidence that factors other than binding to microtubules are involved in determining its cytoplasmic distribution. J Comp Neurol 297:435–440

    CAS  PubMed  Google Scholar 

  • Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803:191–200

    CAS  PubMed  Google Scholar 

  • Menna E, Fossati G, Scita G, Matteoli M (2011) From filopodia to synapses: the role of actin-capping and anti-capping proteins. Eur J Neurosci 34:1655–1662

    PubMed  Google Scholar 

  • Mizui T, Kojima N, Yamazaki H, Katayama M, Hanamura K, Shirao T (2009) Drebrin E is involved in the regulation of axonal growth through actin-myosin interactions. J Neurochem 109:611–622

    CAS  PubMed  Google Scholar 

  • Mogilner A, Rubinstein B (2005) The physics of filopodial protrusion. Biophys J 89:782–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Aoki K, Matsuda M (2008) FRET imaging and in silico simulation: analysis of the signaling network of nerve growth factor-induced neuritogenesis. Brain Cell Biol 36:19–30

    CAS  PubMed  Google Scholar 

  • Nusser N, Gosmanova E, Zheng Y, Tigyi G (2002) Nerve growth factor signals through TrkA, phosphatidylinositol 3-kinase, and Rac1 to inactivate RhoA during the initiation of neuronal differentiation of PC12 cells. J Biol Chem 277:35840–35846

    CAS  PubMed  Google Scholar 

  • Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75:1007–1014

    CAS  PubMed  Google Scholar 

  • Pedrotti B, Islam K (1995) Microtubule associated protein 1B (MAP1B) promotes efficient tubulin polymerisation in vitro. FEBS Lett 371:29–31

    CAS  PubMed  Google Scholar 

  • Pinyol R, Haeckel A, Ritter A, Qualmann B, Kessels MM (2007) Regulation of N-WASP and the Arp2/3 complex by Abp1 controls neuronal morphology. PLoS One 2:e400

    PubMed  PubMed Central  Google Scholar 

  • Riederer BM (2007) Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 71:541–558

    CAS  PubMed  Google Scholar 

  • Riederer BM, Pellier V, Antonsson B, Di Paolo G, Stimpson SA, Lutjens R, Catsicas S, Grenningloh G (1997) Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc Natl Acad Sci U S A 94:741–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts-Galbraith RH, Gould KL (2010) Setting the F-BAR: functions and regulation of the F-BAR protein family. Cell Cycle 9:4091–4097

    CAS  PubMed  Google Scholar 

  • Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S (2004) MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 14:363–371

    CAS  PubMed  Google Scholar 

  • Ruthel G, Hollenbeck PJ (2003) Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 23:8618–8624

    CAS  PubMed  Google Scholar 

  • Saengsawang W, Mitok K, Viesselmann C, Pietila L, Lumbard DC, Corey SJ, Dent EW (2012) The F-BAR protein CIP4 inhibits neurite formation by producing lamellipodial protrusions. Curr Biol 22:494–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW (2013) CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 126:2411–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon WC, Adams MC, Waterman-Storer CM (2002) Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J Cell Biol 158:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y, Hayashi K, Shirao T, Ishikawa R, Kohama K (1996) Inhibition by drebrin of the actin-bundling activity of brain fascin, a protein localized in filopodia of growth cones. J Neurochem 66:980–988

    CAS  PubMed  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfeld TA, Obar RA (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 151:67–137

    CAS  PubMed  Google Scholar 

  • Schwamborn JC, Puschel AW (2004) The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7:923–929

    CAS  PubMed  Google Scholar 

  • Sebok A, Nusser N, Debreceni B, Guo Z, Santos MF, Szeberenyi J, Tigyi G (1999) Different roles for RhoA during neurite initiation, elongation, and regeneration in PC12 cells. J Neurochem 73:949–960

    CAS  PubMed  Google Scholar 

  • Sharp DJ, Kuriyama R, Baas PW (1996) Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation. J Neurosci 16:4370–4375

    CAS  PubMed  Google Scholar 

  • Sharp DJ, Kuriyama R, Essner R, Baas PW (1997) Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation. J Cell Sci 110:2373–2380

    CAS  PubMed  Google Scholar 

  • Shea TB, Beermann ML (1999) Neuronal intermediate filament protein alpha-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cell Motil Cytoskeleton 43:322–333

    CAS  PubMed  Google Scholar 

  • Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327:547–552

    CAS  PubMed  Google Scholar 

  • Skoble J, Auerbuch V, Goley ED, Welch MD, Portnoy DA (2001) Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol 155:89–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CL (1994) The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 127:1407–1418

    CAS  PubMed  Google Scholar 

  • Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5:1564–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translocation. Neuron 43:81–94

    CAS  PubMed  Google Scholar 

  • Sullivan KF (1988) Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 4:687–716

    CAS  PubMed  Google Scholar 

  • Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH (2013) Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep 4:413–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szaro BG, Grant P, Lee VM, Gainer H (1991) Inhibition of axonal development after injection of neurofilament antibodies into a Xenopus laevis embryo. J Comp Neurol 308:576–585

    CAS  PubMed  Google Scholar 

  • Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 103:953–964

    CAS  PubMed  Google Scholar 

  • Tang D, Goldberg DJ (2000) Bundling of microtubules in the growth cone induced by laminin. Mol Cell Neurosci 15:303–313

    CAS  PubMed  Google Scholar 

  • Tao K, Matsuki N, Koyama R (2013) AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev Neurobiol 74:557–573

    PubMed  Google Scholar 

  • Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155:65–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torii T, Miyamoto Y, Nakamura K, Maeda M, Yamauchi J, Tanoue A (2012) Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension. Cell Signal 24:1872–1882

    CAS  PubMed  Google Scholar 

  • Vandecandelaere A, Pedrotti B, Utton MA, Calvert RA, Bayley PM (1996) Differences in the regulation of microtubule dynamics by microtubule-associated proteins MAP1B and MAP2. Cell Motil Cytoskeleton 35:134–146

    CAS  PubMed  Google Scholar 

  • Verheyen EM, Cooley L (1994) Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120:717–728

    CAS  PubMed  Google Scholar 

  • Vignjevic D, Peloquin J, Borisy GG (2006) In vitro assembly of filopodia-like bundles. Methods Enzymol 406:727–739

    CAS  PubMed  Google Scholar 

  • Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C (2014) Rab-mediated trafficking role in neurite formation. J Neurochem 129:240–248

    CAS  PubMed  Google Scholar 

  • Wagner AR, Luan Q, Liu SL, Nolen BJ (2013) Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments. Curr Biol 23:1990–1998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelman JD, Bilancia CG, Peifer M, Kovar DR (2014) Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc Natl Acad Sci U S A 111:4121–4126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Katoh H, Yasui H, Mori K, Negishi M (2001) RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276:18977–18983

    CAS  PubMed  Google Scholar 

  • Yamakita Y, Matsumura F, Yamashiro S (2009) Fascin1 is dispensable for mouse development but is favorable for neonatal survival. Cell Motil Cytoskeleton 66:524–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Svitkina T (2011) Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh Migr 5:402–408

    PubMed  PubMed Central  Google Scholar 

  • Yasuda Y, Fujita S (2003) Distribution of MAP1A, MAP1B, and MAP2A&B during layer formation in the optic tectum of developing chick embryos. Cell Tissue Res 314:315–324

    CAS  PubMed  Google Scholar 

  • Yu W, Ling C, Baas PW (2001) Microtubule reconfiguration during axogenesis. J Neurocytol 30:861–875

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Veeranna, Nixon RA (2012) Neurofilaments at a glance. J Cell Sci 125:3257–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Forscher P (2009) Rac1 modulates stimulus-evoked Ca (2+) release in neuronal growth cones via parallel effects on microtubule/endoplasmic reticulum dynamics and reactive oxygen species production. Mol Biol Cell 20:3700–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng JQ, Poo MM (2007) Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 23:375–404

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Sainath.

Additional information

This work was supported by an NIH award to G.G. (NS078030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainath, R., Gallo, G. Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 359, 267–278 (2015). https://doi.org/10.1007/s00441-014-1955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1955-0

Keywords

Navigation