Skip to main content
Log in

Elevated satellite cell number in Duchenne muscular dystrophy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The regenerative potential of muscle tissue relies mostly on satellite cells situated between the muscular basal membrane and the sarcolemma. The regeneration of muscle tissue comprises proliferation, the propagation of satellite cells, and their subsequent differentiation with the expression of multiple muscle-specific proteins. However, in Duchenne muscular dystrophy (DMD), regeneration cannot compensate for the loss of muscle tissue. To examine the regenerative potential in DMD, satellite cell nuclei number and markers of differentiation in DMD muscle from various disease states were compared with control muscle. Differentiation of satellite cells is characterized by the helix-loop-helix factor myogenin, which is never co-expressed with Pax7, whereas MyoD1 and Myf5 are co-expressed with Pax7, with Myf5 being present even in muscle of controls. The results indicate that satellite cell number is elevated in DMD in comparison with control muscle, even in advanced stages of dystrophy, suggesting that exhaustion of satellite cells is not the primary cause for failed regeneration. The expression of myogenin is correlated neither with fibrosis nor with age. We suggest variable factors influencing the differentiation of satellite cells in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ates K, Yang SY, Orrell RW, Sinanan AC, Simons P, Solomon A, Beech S, Goldspink G, Lewis MP (2007) The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle. FEBS Lett 581:2727–2732

    Article  CAS  PubMed  Google Scholar 

  • Baxter RC (2000) Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 278:E967–E976

    CAS  PubMed  Google Scholar 

  • Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi P, Di Blasi C, Mora M, Morandi L, Galbiati S, Confalonieri P, Cornelio F, Mantegazza R (1999) Transforming growth factor-beta1 and fibrosis in congenital muscular dystrophies. Neuromuscul Disord 9:28–33

    Article  CAS  PubMed  Google Scholar 

  • Brennan TJ, Chakraborty T, Olson EN (1991) Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc Natl Acad Sci USA 88:5675–5679

    Article  CAS  PubMed  Google Scholar 

  • Bulman DE, Murphy EG, Zubrzycka-Gaarn EE, Worton RG, Ray PN (1991) Differentiation of Duchenne and Becker muscular dystrophy phenotypes with amino- and carboxy-terminal antisera specific for dystrophin. Am J Hum Genet 48:295–304

    CAS  PubMed  Google Scholar 

  • Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256:C1262–C1266

    CAS  PubMed  Google Scholar 

  • Cohn RD, Erp C van, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL, Ramirez F, Judge DP, Ward CW, Dietz HC (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    Article  CAS  PubMed  Google Scholar 

  • Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

    Article  CAS  PubMed  Google Scholar 

  • Deconinck N, Dan B (2007) Pathophysiology of Duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36:1–7

    Article  PubMed  Google Scholar 

  • Delaporte C, Dehaupas M, Fardeau M (1984) Comparison between the growth pattern of cell cultures from normal and Duchenne dystrophy muscle. J Neurol Sci 64:149–160

    Article  CAS  PubMed  Google Scholar 

  • Emery AE (1991) Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1:19–29

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Iannaccone ST, Nagy B, Samaha FJ (1987) Decreased creatine kinase activity in cultured Duchenne dystrophic muscle cells. J Child Neurol 2:17–21

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto S, Goto I, Ohta M, Kuroiwa Y (1983) A quantitative study of the muscle satellite cells in various neuromuscular disorders. J Neurol Sci 62:303–314

    Article  CAS  PubMed  Google Scholar 

  • Jasmin G, Tautu C, Vanasse M, Brochu P, Simoneau R (1984) Impaired muscle differentiation in explant cultures of Duchenne muscular dystrophy. Lab Invest 50:197–207

    CAS  PubMed  Google Scholar 

  • Johnson BJ, White ME, Hathaway MR, Dayton WR (1999) Decreased steady-state insulin-like growth factor binding protein-3 (IGFBP-3) mRNA level is associated with differentiation of cultured porcine myogenic cells. J Cell Physiol 179:237–243

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019

    CAS  PubMed  Google Scholar 

  • Luz MA, Marques MJ, Santo NH (2002) Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35:691–695

    Article  CAS  PubMed  Google Scholar 

  • Maier F, Bornemann A (1999) Comparison of the muscle fiber diameter and satellite cell frequency in human muscle biopsies. Muscle Nerve 22:578–583

    Article  CAS  PubMed  Google Scholar 

  • Marini JF, Pons F, Leger J, Loffreda N, Anoal M, Chevallay M, Fardeau M, Leger JJ (1991) Expression of myosin heavy chain isoforms in Duchenne muscular dystrophy patients and carriers. Neuromuscul Disord 1:397–409

    Article  CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  Google Scholar 

  • Megeney LA, Kablar B, Perry RL, Ying C, May L, Rudnicki MA (1999) Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci USA 96:220–225

    Article  CAS  PubMed  Google Scholar 

  • Nonaka I, Takagi A, Sugita H (1981) The significance of type 2C muscle fibers in Duchenne muscular dystrophy. Muscle Nerve 4:326–333

    Article  CAS  PubMed  Google Scholar 

  • Oexle K, Zwirner A, Freudenberg K, Kohlschutter A, Speer A (1997) Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy. Pediatr Res 42:226–231

    Article  CAS  PubMed  Google Scholar 

  • Olive M, Martinez-Matos JA, Pirretas P, Povedano M, Navarro C, Ferrer I (1997) Expression of myogenic regulatory factors (MRFs) in human neuromuscular disorders. Neuropathol Appl Neurobiol 23:475–482

    Article  CAS  PubMed  Google Scholar 

  • Pampusch MS, Hembree JR, Hathaway MR, Dayton WR (1990) Effect of transforming growth factor beta on proliferation of L6 and embryonic porcine myogenic cells. J Cell Physiol 143:524–528

    Article  CAS  PubMed  Google Scholar 

  • Reimann J, Brimah K, Schroder R, Wernig A, Beauchamp JR, Partridge TA (2004) Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 315:233–242

    Article  PubMed  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144:631–643

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    Article  CAS  PubMed  Google Scholar 

  • Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708

    Article  CAS  PubMed  Google Scholar 

  • Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, Ohlsson C (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 96:7088–7092

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh S, Buckingham M (2000) The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol 48:225–268

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh S, Bober E, Babinet C, Pournin S, Arnold H, Buckingham M (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206:291–300

    Article  CAS  PubMed  Google Scholar 

  • Vaidya TB, Rhodes SJ, Taparowsky EJ, Konieczny SF (1989) Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoD1. Mol Cell Biol 9:3576–3579

    CAS  PubMed  Google Scholar 

  • Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659–667

    Article  CAS  PubMed  Google Scholar 

  • Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565

    Article  CAS  PubMed  Google Scholar 

  • Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52:503–513

    Article  CAS  PubMed  Google Scholar 

  • White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD (2000) Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem 48:1531–1544

    CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603

    Article  CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    Article  CAS  PubMed  Google Scholar 

  • Young C, Lin MY, Wang PJ, Shen YZ (1994) Immunocytochemical studies on desmin and vimentin in neuromuscular disorders. J Formos Med Assoc 93:829–835

    CAS  PubMed  Google Scholar 

  • Zacks SI, Sheff MF (1982) Age-related impeded regeneration of mouse minced anterior tibial muscle. Muscle Nerve 5:152–161

    Article  CAS  PubMed  Google Scholar 

  • Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229:380–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karin Sutter and Carmen Kopp for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kottlors.

Additional information

This work was supported by grants from the Deutsche Gesellschaft für Muskelkranke, Germany. MK and JK are members of the German muscular dystrophy network MD-NET. The Pax7 antibody developed by Atsushi Kawakami was obtained from the Developmental Studies Hybridoma Bank established under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kottlors, M., Kirschner, J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 340, 541–548 (2010). https://doi.org/10.1007/s00441-010-0976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0976-6

Keywords

Navigation