Skip to main content
Log in

Tyrosine phosphorylation of plant tubulin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phosphorylation of αβ-tubulins dimers by protein tyrosine kinases plays an important role in the regulation of cellular growth and differentiation in animal cells. In plants, however, the role of tubulin tyrosine phosphorylation is unknown and data on this tubulin modification are limited. In this study, we used an immunochemical approach to demonstrate that tubulin isolated by both immunoprecipitation and DEAE-chromatography is phosphorylated on tyrosine residues in cultured cells of Nicotiana tabacum. This opens up the possibility that tyrosine phosphorylation of tubulin could be involved in modulating the properties of plant microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama T, Kadowaki T, Nishida E, Kadooka T, Ogawara H, Fukami Y, Sakai H, Takaku F, Kasuga M (1986) Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro. J Biol Chem 261:14797–14803

    PubMed  CAS  Google Scholar 

  • Ali N, Halfter U, Chua N-H (1994) Cloning and biochemical characterization of a plant protein kinase that phosphorylates serine, threonine, and tyrosine. J Biol Chem 269:31626–31629

    PubMed  CAS  Google Scholar 

  • Barizza E, Schiavo FL, Terzi M, Filippini F (1999) Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett 447:191–194

    Article  PubMed  CAS  Google Scholar 

  • Barroso C, Chan J, Allan V, Doonan J, Hussey P, Lloyd C (2000) Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J 24:859–868

    Article  PubMed  CAS  Google Scholar 

  • Blume YB, Smertenko A, Ostapets NN, Viklický V, Dráber P (1997) Post-translational modifications of plant tubulin. Cell Biol Int 21:918–920

    Google Scholar 

  • Breviario D (2000) Tubulin genes and promotors. In: Nick P (ed) Plant microtubules. Springer, Berlin, pp 137–157

    Google Scholar 

  • De la Fuente van Bentem S, Anrather D, Dohnal I, Roitinger E, Csaszar E, Joore J, Buijnink J, Carreri A, Forzani C, Lorkovic ZJ, Barta A, Lecourieux D, Verhouning A, Jonak C, Hirt H (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 7:2458–2470

    Article  PubMed  CAS  Google Scholar 

  • Dráber P, Lagunowich LA, Dráberová E, Viklický V, Damjanov I (1988) Heterogeneity of tubulin epitopes in mouse fetal tissues. Histochemistry 89:485–492

    Article  PubMed  Google Scholar 

  • Dráberová E, Dráber P (1993) A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci 106:1263–1273

    PubMed  Google Scholar 

  • Dráberová E, Dráber P (1998) Novel monoclonal antibodies TU-08 and TU-16 specific for tubulin subunits. Folia Biol (Praha) 44:35–36

    Google Scholar 

  • Dráberová E, Zíková M, Dráber P (1999) Monoclonal antibody VI-10 specific for vimentin. Folia Biol (Praha) 45:35–36

    Google Scholar 

  • Dryková D, Sulimenko V, Cenklová V, Volc J, Dráber P, Binarová P (2003) Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    Article  PubMed  CAS  Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation in drawf peas is accompanied by rapid modification of an α-tubulin isotypes. Plant J 5:363–372

    Article  CAS  Google Scholar 

  • Fordham-Skelton AP, Skipsey M, Evans IM, Edwards R, Gatehouse JA (1999) Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis. Plant Mol Biol 39:593–605

    Article  PubMed  CAS  Google Scholar 

  • Gilmer S, Clay P, MacRae TH, Fowke LC (1999a) Acetylated tubulin is found in all microtubule arrays of two species of pine. Protoplasma 207:174–185

    Article  CAS  Google Scholar 

  • Gilmer S, Clay P, MacRae TH, Fowke LC (1999b) Tyrosinated, but not detyrosinated, α-tubulin is present in root tip cells. Protoplasma 210:92–98

    Article  CAS  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Weiss W (1999) Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis 20:712–717

    Article  PubMed  Google Scholar 

  • Guo A, Villén J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105:692–697

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2007) PhosPhat: a database of phosphorylation sites in Arabidopsis thaliana and plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021 database issue

    Article  PubMed  CAS  Google Scholar 

  • Heberle-Bors E (2001) Cyclin-dependent protein kinases, mitogen-activated protein kinases and the plant cell cycle. Curr Sci 80:225–232

    CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2:11–15

    Article  Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97:2405–2407

    Article  PubMed  CAS  Google Scholar 

  • Huang RF, Lloyd CW (1999) Gibberellic acid stabilizes microtubules in maize suspension cells to cold and stimulates acetylation of α-tubulin. FEBS Lett 443:317–320

    Article  PubMed  CAS  Google Scholar 

  • Ingram GC, Waites R (2006) Keeping it together: co-ordinating plant growth. Curr Opin Plant Biol 9:12–20

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Fujioka T, Ui M (1999) Decreases in cAMP phosphodiesterase activity in hepatocytes cultured with herbimycin A due to cellular microtubule polymerization related to inhibition of tyrosine phosphorylation of α-tubulin. Eur J Biochem 260:398–408

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Fujita-Yamaguchi Y, Nishida E, Takaku F, Akiyama T, Kathuria S, Akanuma Y, Kasuga M (1985) Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinase. J Biol Chem 260:4016–4020

    PubMed  CAS  Google Scholar 

  • Kameyama K, Kishi Y, Yoshimura M, Kanzawa N, Sameshima M, Tsuchiya T (2000) Tyrosine phosphorylation in plant bending. Nature 407:37

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Ley SC, Verbi W, Pappin DJ, Druker B, Davies AA, Crumpton MJ (1994) Tyrosine phosphorylation of alpha tubulin in human T lymphocytes. Eur J Immunol 24:99–106

    Article  PubMed  CAS  Google Scholar 

  • Linhartová I, Dráber P, Dráberová E, Viklický V (1992) Immunological discrimination of β-tubulin isoforms in developing mouse brain. Biochem J 288:919–924

    PubMed  Google Scholar 

  • Luan S (2002) Tyrosine phosphorylation in plant cell signaling. Proc Nat Acad Sci USA 99:11567–11569

    Article  PubMed  CAS  Google Scholar 

  • Lukáš Z, Dráber P, Buček J, Dráberová E, Viklický V, Doležel S (1993) Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. Histochemistry 100:495–502

    Article  PubMed  Google Scholar 

  • Maness PF, Matten WT (1990) Tyrosine phosphorylation of membrane-associated tubulin in nerve growth cones enriched in pp60c-src. Ciba Found Symp 150:57–69

    PubMed  CAS  Google Scholar 

  • Matten WT, Aubry M, West J, Maness PF (1990) Tubulin is phosphorylated at tyrosine by pp60c-src in nerve growth cone membranes. J Cell Biol 111:1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Morejohn LC, Bureau TE, Tocchi LP, Fosket DE (1984) Tubulins from different higher-plant species are immunologically nonidentical and bind colchicine differentially. Proc Natl Acad Sci USA 81:1440–1444

    Article  PubMed  CAS  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed  CAS  Google Scholar 

  • Opatrný Z, Opatrná J (1976) The specificity of the effect of 2, 4-D and NAA on the growth, micromorphology, and occurence of starch in long-term Nicotiana tabacum L. cell strains. Biol Plant (Praha) 18:359–365

    Google Scholar 

  • Peters JD, Furlong MT, Asai DJ, Harrison ML, Geahlen RL (1996) Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem 271:4755–4762

    Article  PubMed  CAS  Google Scholar 

  • Reddy MM, Rajasekharan R (2007) Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity. Arch Biochem Biophys 460:122–128

    Article  PubMed  CAS  Google Scholar 

  • Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60:293–319

    Article  PubMed  CAS  Google Scholar 

  • Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, Hirofumi U, Umeda M (2006) Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J 47:701–710

    Article  PubMed  CAS  Google Scholar 

  • Smertenko A, Blume YB, Viklický V, Opatrný Z, Dráber P (1997) Posttranslational modifications and multiple isoforms of tubulin in Nicotiana tabacum cells. Planta 201:349–358

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4, article number 193

  • Torruella M, Casano LM, Vallejos RH (1986) Evidence of the activity of tyrosine kinase(s) and of the presence of phosphotyrosine proteins in pea plantlets. J Biol Chem 261:6651–6653

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Trojanek J, Ek P, Scoble J, Muszynska G, Engström L (1996) Phosphorylation of plant proteins and the identification of protein-tyrosine kinase activity in maize seedlings. Eur J Biochem 235:338–344

    Article  PubMed  CAS  Google Scholar 

  • Trojanek JB, Klimecka MM, Fraser A, Dobrowolska G, Muszyńska G (2004) Characterization of dual specificity protein kinase from maize seedlings. Acta Biochim Pol 51:635–647

    PubMed  CAS  Google Scholar 

  • Viklický V, Dráber P, Hašek J, Bártek J (1982) Production and characterization of a monoclonal antitubulin antibody. Cell Biol Int Rep 6:725–731

    Article  PubMed  Google Scholar 

  • Walker-Simmons MK (1998) Protein kinases in seeds. Seed Sci Res 8:193–200

    Article  CAS  Google Scholar 

  • Wandosell F, Serrano L, Avila J (1987) Phosphorylation of alpha-tubulin carboxy-terminal tyrosine prevents its incorporation into microtubules. J Biol Chem 262:8268–8273

    PubMed  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of alpha-tubulin in Zea mays L. are highly tissue specific. Planta 218:460–465

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Fu HH, Gupta R, Luan S (1998) Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10:849–857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded partially by NATO LST.CLG 979212 for Alla Yemets and Clive Lloyd, and by INTAS Grant 03-51-6459 for Alla Yemets, Yaroslav Blume, Pavel Dráber and Vadym Sulimenko. The work of Tetyana Sulimenko, Vadym Sulimenko and Pavel Dráber was also supported from project LC545 (Ministry of Education, Youth and Sport of Czech Republic) Grant No. 204/05/2375 from GACR and by Institutional Research support AVOZ 50520514. Alla Yemets was supported from INTAS Experienced Postdoctoral Fellowship for Young Scientists YSF 00-184. Clive Lloyd and Jordi Chan were funded by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Blume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blume, Y., Yemets, A., Sulimenko, V. et al. Tyrosine phosphorylation of plant tubulin. Planta 229, 143–150 (2008). https://doi.org/10.1007/s00425-008-0816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0816-z

Keywords

Navigation