Skip to main content

Advertisement

Log in

Stressed podocytes—mechanical forces, sensors, signaling and response

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman’s space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, Antignac C, Pollak M, Kopp JB, Winn MP, Shaw AS (2011) Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 121:4127–4137. doi:10.1172/JCI46458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 305:C276–C289. doi:10.1152/ajpcell.00095.2013

    Article  CAS  PubMed  Google Scholar 

  3. Anderson S, Meyer TW, Rennke HG, Brenner BM (1985) Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619. doi:10.1172/JCI112013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C, Bollig F, Staggs L, Roberts IS, Park JK, Haller H, Schiffer M (2010) Cofilin-1 inactivation leads to proteinuria--studies in zebrafish, mice and humans. PLoS One 5:e12626. doi:10.1371/journal.pone.0012626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bains R, Furness PN, Critchley DR (1997) A quantitative immunofluorescence study of glomerular cell adhesion proteins in proteinuric states. J Pathol 183:272–280. doi:10.1002/(SICI)1096-9896(199711)183:3<272::AID-PATH914>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  6. Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci U S A 99:5139–5143. doi:10.1073/pnas.072650799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288:27307–27314. doi:10.1074/jbc.M113.478321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brahler S, Yu H, Suleiman H, Krishnan GM, Saunders BT, Kopp JB, Miner JH, Zinselmeyer BH, Shaw AS (2016) Intravital and kidney slice imaging of podocyte membrane dynamics. J Am Soc Nephrol. doi:10.1681/ASN.2015121303

  9. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619. doi:10.1073/pnas.1320768111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM (2016) An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 310:C243–C259. doi:10.1152/ajpcell.00328.2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A 105:2538–2543. doi:10.1073/pnas.0707730105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EH (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679. doi:10.1242/jcs.042986

    Article  CAS  PubMed  Google Scholar 

  13. Corbett SA, Lee L, Wilson CL, Schwarzbauer JE (1997) Covalent cross-linking of fibronectin to fibrin is required for maximal cell adhesion to a fibronectin-fibrin matrix. J Biol Chem 272:24999–25005

    Article  CAS  PubMed  Google Scholar 

  14. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi:10.1126/science.1193270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181. doi:10.1038/nature10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281:F579–F596

    CAS  PubMed  Google Scholar 

  17. Deen WM, Maddox DA, Robertson CR, Brenner BM (1974) Dynamics of glomerular ultrafiltration in the rat. VII. Response to reduced renal mass. Am J Phys 227:556–562

    CAS  Google Scholar 

  18. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641. doi:10.1126/science.1162912

    Article  PubMed  CAS  Google Scholar 

  19. Drenckhahn D, Franke RP (1988) Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Investig 59:673–682

    CAS  PubMed  Google Scholar 

  20. Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916. doi:10.1152/ajpcell.00159.2002

    Article  CAS  PubMed  Google Scholar 

  21. Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343:42–53. doi:10.1016/j.yexcr.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  22. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. doi:10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  23. Durvasula RV, Shankland SJ (2005) Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis. Am J Physiol Renal Physiol 289:F577–F584. doi:10.1152/ajprenal.00393.2004

    Article  CAS  PubMed  Google Scholar 

  24. Dworkin LD, Hostetter TH, Rennke HG, Brenner BM (1984) Hemodynamic basis for glomerular injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest 73:1448–1461. doi:10.1172/JCI111349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature. doi:10.1038/nature10430

  26. Embry AE, Mohammadi H, Niu X, Liu L, Moe B, Miller-Little WA, Lu CY, Bruggeman LA, McCulloch CA, Janmey PA, Miller RT (2016) Biochemical and cellular determinants of renal glomerular elasticity. PLoS One 11:e0167924. doi:10.1371/journal.pone.0167924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Endlich K, Loutzenhiser R (2015) The structure and function of renal blood vessels. In: Turner NN, Lameire N, Goldsmith DJ, Winearls CG, Himmelfarb J, Remuzzi G (eds) Oxford textbook of clinical nephrology, vol 2, 4th edn. Oxford University Press, Oxford, pp 1725–1728

    Chapter  Google Scholar 

  28. Endlich K, Loutzenhiser R (2015) Tubuloglomerular feedback, renal autoregulation, and renal protection. In: Turner NN, Lameire N, Goldsmith DJ, Winearls CG, Himmelfarb J, Remuzzi G (eds) Oxford textbook of clinical nephrology, vol 2, 4th edn. Oxford University Press, Oxford, pp 1738–1741

    Chapter  Google Scholar 

  29. Endlich N, Endlich K (2012) The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32:327–341. doi:10.1016/j.semnephrol.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  30. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12:413–422

    CAS  PubMed  Google Scholar 

  31. Endlich N, Sunohara M, Nietfeld W, Wolski EW, Schiwek D, Kranzlin B, Gretz N, Kriz W, Eickhoff H, Endlich K (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16:1850–1852. doi:10.1096/fj.02-0125fje

    CAS  PubMed  Google Scholar 

  32. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437. doi:10.1016/j.tcb.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  33. Forst AL, Olteanu VS, Mollet G, Wlodkowski T, Schaefer F, Dietrich A, Reiser J, Gudermann T, Mederos y Schnitzler M, Storch U (2016) Podocyte purinergic P2X4 channels are Mechanotransducers that mediate cytoskeletal disorganization. J Am Soc Nephrol 27:848–862. doi:10.1681/ASN.2014111144

    Article  CAS  PubMed  Google Scholar 

  34. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644. doi:10.1126/science.1168441

    Article  CAS  PubMed  Google Scholar 

  35. Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 291:F856–F865. doi:10.1152/ajprenal.00196.2005

    Article  CAS  PubMed  Google Scholar 

  36. Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB (2010) Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem 285:22676–22688. doi:10.1074/jbc.M110.122929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gee EP, Yuksel D, Stultz CM, Ingber DE (2013) SLLISWD sequence in the 10FNIII domain initiates fibronectin fibrillogenesis. J Biol Chem 288:21329–21340. doi:10.1074/jbc.M113.462077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu JY, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, Otto EA, Han Z, Hildebrandt F (2015) KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 125:2375–2384. doi:10.1172/JCI79504

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:1097–1103. doi:10.1007/s00424-007-0359-3

    Article  CAS  PubMed  Google Scholar 

  40. Gyarmati G, Toma I, Peti-Peterdi J (2016) Mechanical overload may lead to podocte damage by increasing podocyte [Ca2+] through TRPC6 channels and P2Y2 receptors. (SA-OR095) In: Kidney Week 2016. J. Am. Soc. Nephrol., p 88A

  41. Ha TS, Choi JY, Park HY, Han GD (2013) Changes of podocyte p130Cas in diabetic conditions. J Nephrol 26:870–876. doi:10.5301/jn.5000261

    Article  PubMed  CAS  Google Scholar 

  42. Hackl MJ, Burford JL, Villanueva K, Lam L, Susztak K, Schermer B, Benzing T, Peti-Peterdi J (2013) Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat Med 19:1661–1666. doi:10.1038/nm.3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195:721–727. doi:10.1083/jcb.201102039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300. doi:10.1038/nrneph.2012.19

    Article  CAS  PubMed  Google Scholar 

  45. Helmke BP (2005) Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology (Bethesda) 20:43–53. doi:10.1152/physiol.00040.2004

    Article  CAS  Google Scholar 

  46. Hoffman LM, Jensen CC, Kloeker S, Wang CL, Yoshigi M, Beckerle MC (2006) Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J Cell Biol 172:771–782. doi:10.1083/jcb.200512115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang C, Bruggeman LA, Hydo LM, Miller RT (2012) Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res 318:1075–1085. doi:10.1016/j.yexcr.2012.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086. doi:10.1073/pnas.0607465103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ichimura K, Kurihara H, Sakai T (2003) Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem 51:1589–1600

    Article  CAS  PubMed  Google Scholar 

  50. Ingham KC, Brew SA, Isaacs BS (1988) Interaction of fibronectin and its gelatin-binding domains with fluorescent-labeled chains of type I collagen. J Biol Chem 263:4624–4628

    CAS  PubMed  Google Scholar 

  51. Janostiak R, Pataki AC, Brabek J, Rosel D (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93:445–454. doi:10.1016/j.ejcb.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  52. Johnstone DB, Ikizler O, Zhang J, Holzman LB (2013) Background strain and the differential susceptibility of podocyte-specific deletion of Myh9 on murine models of experimental glomerulosclerosis and HIV nephropathy. PLoS One 8:e67839. doi:10.1371/journal.pone.0067839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnstone DB, Zhang J, George B, Leon C, Gachet C, Wong H, Parekh R, Holzman LB (2011) Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol 31:2162–2170. doi:10.1128/MCB.05234-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keyvani Chahi A, Martin CE, Jones N (2016) Nephrin suppresses hippo signaling through the adaptor proteins Nck and WTIP. J Biol Chem 291:12799–12808. doi:10.1074/jbc.M116.724245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylanne J, Calderwood DA (2006) The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21:337–347. doi:10.1016/j.molcel.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  56. Kim EY, Alvarez-Baron CP, Dryer SE (2009) Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+−activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 75:466–477. doi:10.1124/mol.108.051912

    Article  CAS  PubMed  Google Scholar 

  57. Krammer A, Craig D, Thomas WE, Schulten K, Vogel V (2002) A structural model for force regulated integrin binding to fibronectin's RGD-synergy site. Matrix Biol 21:139–147

    Article  CAS  PubMed  Google Scholar 

  58. Krammer A, Lu H, Isralewitz B, Schulten K, Vogel V (1999) Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc Natl Acad Sci U S A 96:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kretzler M, Koeppen-Hagemann I, Kriz W (1994) Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat. Virchows Arch 425:181–193

    Article  CAS  PubMed  Google Scholar 

  60. Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hahnel B (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376

    Article  CAS  PubMed  Google Scholar 

  61. Kriz W, Hosser H, Hahnel B, Simons JL, Provoost AP (1998) Development of vascular pole-associated glomerulosclerosis in the fawn-hooded rat. J Am Soc Nephrol 9:381–396

    CAS  PubMed  Google Scholar 

  62. Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269. doi:10.1681/ASN.2014030278

    Article  PubMed  CAS  Google Scholar 

  63. Kriz W, Lemley KV (2017) Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol 32:405–417. doi:10.1007/s00467-016-3358-9

    Article  PubMed  Google Scholar 

  64. Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D, Luna S, Vogel V (2015) Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6:8026. doi:10.1038/ncomms9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leiss M, Beckmann K, Giros A, Costell M, Fassler R (2008) The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20:502–507. doi:10.1016/j.ceb.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  66. Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ (2014) Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol 25:939–951. doi:10.1681/ASN.2013030233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu S, Shi L, Wang S (2007) Overexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury. Am J Physiol Renal Physiol 293:F1727–F1735. doi:10.1152/ajprenal.00316.2007

    Article  CAS  PubMed  Google Scholar 

  68. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588:2663–2670. doi:10.1016/j.febslet.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  69. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185. doi:10.1038/ncb1218

    Article  CAS  PubMed  Google Scholar 

  70. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR (2004) p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol 286:F693–F701. doi:10.1152/ajprenal.00331.2003

    Article  CAS  PubMed  Google Scholar 

  71. Miner JH (2012) The glomerular basement membrane. Exp Cell Res 318:973–978. doi:10.1016/j.yexcr.2012.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morton MJ, Hutchinson K, Mathieson PW, Witherden IR, Saleem MA, Hunter M (2004) Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration. J Am Soc Nephrol 15:2981–2987. doi:10.1097/01.ASN.0000145046.24268.0D

    Article  PubMed  Google Scholar 

  73. Neal CR, Crook H, Bell E, Harper SJ, Bates DO (2005) Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space. J Am Soc Nephrol 16:1223–1235. doi:10.1681/ASN.2004100822

    Article  PubMed  Google Scholar 

  74. Neal CR, Muston PR, Njegovan D, Verrill R, Harper SJ, Deen WM, Bates DO (2007) Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Physiol Renal Physiol 293:F1787–F1798. doi:10.1152/ajprenal.00157.2007

    Article  CAS  PubMed  Google Scholar 

  75. Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447. doi:10.1016/S0022-2836(02)00306-6

    Article  CAS  PubMed  Google Scholar 

  76. Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814. doi:10.1038/ncb1437

    Article  CAS  PubMed  Google Scholar 

  77. Petersen EN, Chung HW, Nayebosadri A, Hansen SB (2016) Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D. Nat Commun 7:13873. doi:10.1038/ncomms13873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Randles MJ, Humphries MJ, Lennon R (2017) Proteomic definitions of basement membrane composition in health and disease. Matrix Biol 57-58:12–28. doi:10.1016/j.matbio.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  79. Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, Pawson T, Wrana J, McNeill H (2013) Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet 9:e1003380. doi:10.1371/journal.pgen.1003380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744. doi:10.1038/ng1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rinschen MM, Grahammer F, Hoppe AK, Kohli P, Hagmann H, Kretz O, Bertsch S, Hohne M, Gobel H, Bartram MP, Gandhirajan RK, Kruger M, Brinkkoetter PT, Huber TB, Kann M, Wickstrom SA, Benzing T, Schermer B (2017) YAP-mediated mechanotransduction determines the podocyte's response to damage. Sci Signal 10. doi:10.1126/scisignal.aaf8165

  82. Rognoni L, Stigler J, Pelz B, Ylanne J, Rief M (2012) Dynamic force sensing of filamin revealed in single-molecule experiments. Proc Natl Acad Sci U S A 109:19679–19684. doi:10.1073/pnas.1211274109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Romet-Lemonne G, Jegou A (2013) Mechanotransduction down to individual actin filaments. Eur J Cell Biol 92:333–338. doi:10.1016/j.ejcb.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  84. Sachs N, Sonnenberg A (2013) Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 9:200–210. doi:10.1038/nrneph.2012.291

    Article  CAS  PubMed  Google Scholar 

  85. Sakai T, Lemley KV, Hackenthal E, Nagata M, Nobiling R, Kriz W (1992) Changes in glomerular structure following acute mesangial failure in the isolated perfused kidney. Kidney Int 41:533–541

    Article  CAS  PubMed  Google Scholar 

  86. Salmon AH, Toma I, Sipos A, Muston PR, Harper SJ, Bates DO, Neal CR, Peti-Peterdi J (2007) Evidence for restriction of fluid and solute movement across the glomerular capillary wall by the subpodocyte space. Am J Physiol Renal Physiol 293:F1777–F1786. doi:10.1152/ajprenal.00187.2007

    Article  CAS  PubMed  Google Scholar 

  87. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026. doi:10.1016/j.cell.2006.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schordan S, Grisk O, Schordan E, Miehe B, Rumpel E, Endlich K, Giebel J, Endlich N (2013) OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am J Physiol Renal Physiol 304:F1458–F1470. doi:10.1152/ajprenal.00615.2012

    Article  CAS  PubMed  Google Scholar 

  89. Schordan S, Schordan E, Endlich K, Endlich N (2011) AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Renal Physiol 300:F119–F132. doi:10.1152/ajprenal.00143.2010

    Article  CAS  PubMed  Google Scholar 

  90. Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a005041

  91. Simons JL, Provoost AP, Anderson S, Troy JL, Rennke HG, Sandstrom DJ, Brenner BM (1993) Pathogenesis of glomerular injury in the fawn-hooded rat: early glomerular capillary hypertension predicts glomerular sclerosis. J Am Soc Nephrol 3:1775–1782

    CAS  PubMed  Google Scholar 

  92. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J, Mundel P, Holthofer H (2001) Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159:1069–1077. doi:10.1016/S0002-9440(10)61782-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith MA, Hoffman LM, Beckerle MC (2014) LIM proteins in actin cytoskeleton mechanoresponse. Trends Cell Biol 24:575–583. doi:10.1016/j.tcb.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna-Morris S, Vogel V (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol 5:e268. doi:10.1371/journal.pbio.0050268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103:16586–16591. doi:10.1073/pnas.0606894103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Srivastava T, Alon US, Cudmore PA, Tarakji B, Kats A, Garola RE, Duncan RS, McCarthy ET, Sharma R, Johnson ML, Bonewald LF, El-Meanawy A, Savin VJ, Sharma M (2014) Cyclooxygenase-2, prostaglandin E2, and prostanoid receptor EP2 in fluid flow shear stress-mediated injury in the solitary kidney. Am J Physiol Renal Physiol 307:F1323–F1333. doi:10.1152/ajprenal.00335.2014

    Article  CAS  PubMed  Google Scholar 

  97. Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA (2014) Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 29:65–72. doi:10.1093/ndt/gft387

    Article  PubMed  Google Scholar 

  98. Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF (2010) Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 4:79–90. doi:10.1007/s12079-010-0088-9

    Article  PubMed  PubMed Central  Google Scholar 

  99. Srivastava T, McCarthy ET, Sharma R, Kats A, Carlton CG, Alon US, Cudmore PA, El-Meanawy A, Sharma M (2013) Fluid flow shear stress upregulates prostanoid receptor EP2 but not EP4 in murine podocytes. Prostaglandins Other Lipid Mediat 104-105:49–57. doi:10.1016/j.prostaglandins.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  100. Steinhausen M, Endlich K, Wiegman DL (1990) Glomerular blood flow. Kidney Int 38:769–784

    Article  CAS  PubMed  Google Scholar 

  101. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0

    Article  CAS  PubMed  Google Scholar 

  102. Sun Z, Guo SS, Fassler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215:445–456. doi:10.1083/jcb.201609037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, Patapoutian A (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–1746. doi:10.1016/j.celrep.2016.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37. doi:10.1007/s00424-014-1530-2

    Article  CAS  PubMed  Google Scholar 

  105. Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57:460–469. doi:10.2337/db07-1119

    Article  CAS  PubMed  Google Scholar 

  106. Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S (2014) Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Invest 124:1098–1113. doi:10.1172/JCI69778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, Joles JA (2017) Glomerular Hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039. doi:10.1681/ASN.2016060666

    Article  PubMed  Google Scholar 

  108. Uemura A, Nguyen TN, Steele AN, Yamada S (2011) The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys J 101:1069–1075. doi:10.1016/j.bpj.2011.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Venkatareddy M, Cook L, Abuarquob K, Verma R, Garg P (2011) Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin. PLoS One 6:e28710. doi:10.1371/journal.pone.0028710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vogtlander NP, Visch HJ, Bakker MA, Berden JH, van der Vlag J (2009) Ligation of alpha-dystroglycan on podocytes induces intracellular signaling: a new mechanism for podocyte effacement? PLoS One 4:e5979. doi:10.1371/journal.pone.0005979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63. doi:10.1038/nm1696

    Article  CAS  PubMed  Google Scholar 

  112. Welling LW, Zupka MT, Welling DJ (1995) Mechanical properties of basement membrane. News Physiol Sci 10:30–35

    Google Scholar 

  113. Welsch T, Endlich N, Kriz W, Endlich K (2001) CD2AP and p130Cas localize to different F-actin structures in podocytes. Am J Physiol Renal Physiol 281:F769–F777

    CAS  PubMed  Google Scholar 

  114. Wilson C, Dryer SE (2014) A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades. Am J Physiol Renal Physiol 306:F1018–F1025. doi:10.1152/ajprenal.00662.2013

    Article  CAS  PubMed  Google Scholar 

  115. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804. doi:10.1126/science.1106215

    Article  CAS  PubMed  Google Scholar 

  116. Wyss HM, Henderson JM, Byfield FJ, Bruggeman LA, Ding Y, Huang C, Suh JH, Franke T, Mele E, Pollak MR, Miner JH, Janmey PA, Weitz DA, Miller RT (2011) Biophysical properties of normal and diseased renal glomeruli. Am J Physiol Cell Physiol 300:C397–C405. doi:10.1152/ajpcell.00438.2010

    Article  CAS  PubMed  Google Scholar 

  117. Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R, Payre M, Lim CT, Ladoux B, Mege RM, Yan J (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5:4525. doi:10.1038/ncomms5525

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The continuous support of the authors’ work by grants of the German Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union (EU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlhans Endlich.

Additional information

This article is part of the special issue on Functional Anatomy of the Kidney in Health and Disease in Pflügers Archiv—European Journal of Physiology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endlich, K., Kliewe, F. & Endlich, N. Stressed podocytes—mechanical forces, sensors, signaling and response. Pflugers Arch - Eur J Physiol 469, 937–949 (2017). https://doi.org/10.1007/s00424-017-2025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2025-8

Keywords

Navigation