Skip to main content

Advertisement

Log in

The STARS signaling pathway: a key regulator of skeletal muscle function

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

During the last decade, the striated muscle activator of Rho signaling (STARS), a muscle-specific protein, has been proposed to play an increasingly important role in skeletal muscle growth, metabolism, regeneration and stress adaptation. STARS influences actin dynamics and, as a consequence, regulates the myocardin-related transcription factor A/serum response factor (MRTF-A/SRF) transcriptional program, a well-known pathway controlling skeletal muscle development and function. Muscle-specific stress conditions, such as exercise, positively regulates, while disuse and degenerative muscle diseases are associated with a downregulation of STARS and its downstream partners, suggesting a pivotal role for STARS in skeletal muscle health. This review provides a comprehensive overview of the known role and regulation of STARS and the members of its signaling pathway, RhoA, MRTF-A and SRF, in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aline G, Sotiropoulos A (2012) Srf: a key factor controlling skeletal muscle hypertrophy by enhancing the recruitment of muscle stem cells. Bioarchitecture 2(3):88–90

    PubMed Central  PubMed  Google Scholar 

  2. Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276:43524–43533

    CAS  PubMed  Google Scholar 

  3. Arai A, Spencer JA, Olson EN (2002) STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem 277:24453–24459

    CAS  PubMed  Google Scholar 

  4. Aravind L, Koonin EV (2000) SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25(3):112–114

    CAS  PubMed  Google Scholar 

  5. Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17(21):6289–6299

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT, Bassel-Duby R, Richardson JA, Katus HA, Olson EN, Frey N (2007) Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 282:8393–8403

    CAS  PubMed  Google Scholar 

  7. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37

    CAS  PubMed  Google Scholar 

  8. Blaker AL, Taylor JM, Mack CP (2009) PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 29(12):2153–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, de Tombe PP, Russell B (2007) Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein. Am J Physiol Heart Circ Physiol 292(1):H259–H269

    CAS  PubMed  Google Scholar 

  10. Boppart MD, Burkin DJ, Kaufman SJ (2006) Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 290(6):C1660–C1665

    CAS  PubMed  Google Scholar 

  11. Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14

    CAS  PubMed  Google Scholar 

  12. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    CAS  PubMed  Google Scholar 

  13. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298

    CAS  PubMed  Google Scholar 

  14. Calderwood DA, Shattil SJ, Ginsberg MH (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 275(30):22607–22610

    CAS  PubMed  Google Scholar 

  15. Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N, Fernandez A (1998) RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9:1891–1902

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Carson JA, Schwartz RJ, Booth FW (1996) SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. Am J Physiol 270:C1624–C1633

    CAS  PubMed  Google Scholar 

  17. Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88(1):337–343

    CAS  PubMed  Google Scholar 

  18. Castellani L, Salvati E, Alema S, Falcone G (2006) Fine regulation of RhoA and ROCK is required for skeletal muscle differentiation. J Biol Chem 281:15249–15257

    CAS  PubMed  Google Scholar 

  19. Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R (2003) Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol 23:6597–6608

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Charrasse S, Comunale F, Grumbach Y, Poulat F, Blangy A, Gauthier-Rouviere C (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell 17(2):749–759

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D (2006) New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 26:6664–6674

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen H, Bernstein BW, Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25:19–23

    CAS  PubMed  Google Scholar 

  23. Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB (2002) Dystrophin–glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol Cell Physiol 283(2):C500–C511

    CAS  PubMed  Google Scholar 

  24. Chong NW, Koekemoer AL, Ounzain S, Samani NJ, Shin JT, Shaw SY (2012) STARS is essential to maintain cardiac development and function in vivo via a SRF pathway. PLoS One 7(7):e40966

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268(5208):233–239

    CAS  PubMed  Google Scholar 

  26. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706

    CAS  PubMed  Google Scholar 

  27. Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103

    CAS  PubMed  Google Scholar 

  28. Copeland JW, Treisman R (2002) The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 13:4088–4099

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Dhawan J, Helfman DM (2004) Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. J Cell Sci 117(17):3735–3748

    CAS  PubMed  Google Scholar 

  30. Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M (2011) Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286(40):35007–35019

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ecarnot-Laubriet A, De Luca K, Vandroux D, Moisant M, Bernard C, Assem M, Rochette L, Teyssier JR (2000) Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J Mol Cell Cardiol 32(12):2385–2395

    CAS  PubMed  Google Scholar 

  32. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    CAS  PubMed  Google Scholar 

  33. Favier FB, Benoit H, Freyssenet D (2008) Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch-Eur J Physiol 456(3):587–600

    CAS  Google Scholar 

  34. Flick MJ, Konieczny SF (2000) The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 113(Pt 9):1553–1564

    CAS  PubMed  Google Scholar 

  35. Fluck M, Booth FW, Waxham MN (2000) Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270(2):488–494

    CAS  PubMed  Google Scholar 

  36. Fluck M, Carson JA, Schwartz RJ, Booth FW (1999) SRF protein is upregulated during stretch-induced hypertrophy of rooster ALD muscle. Journal Of Applied Physiology (Bethesda, MD: 1985) 86:1793–1799

  37. Fluck M, Waxham MN, Hamilton MT, Booth FW (2000) Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88(1):352–358

    CAS  PubMed  Google Scholar 

  38. Fogl C, Puckey L, Hinssen U, Zaleska M, El-Mezgueldi M, Croasdale R, Bowman A, Matsukawa A, Samani NJ, Savva R, Pfuhl M (2011) A structural and functional dissection of the cardiac stress response factor MS1. Proteins 80:398–409

    Google Scholar 

  39. Gautel M (2008) The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv Exp Med Biol 642:176–191

    CAS  PubMed  Google Scholar 

  40. Gautel M (2011) The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 23(1):39–46

    CAS  PubMed  Google Scholar 

  41. Gauthier-Rouviere C, Vandromme M, Tuil D, Lautredou N, Morris M, Soulez M, Kahn A, Fernandez A, Lamb N (1996) Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell 7(5):719–729

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Giger JM, Bodell PW, Zeng M, Baldwin KM, Haddad F (2009) Rapid muscle atrophy response to unloading: pretranslational processes involving MHC and actin. J Appl Physiol 107(4):1204–1212

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gineitis D, Treisman R (2001) Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 276:24531–24539

    CAS  PubMed  Google Scholar 

  44. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984

    CAS  PubMed  Google Scholar 

  45. Gordon SE, Fluck M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90(3):1174–1183, discussion 1165

    CAS  PubMed  Google Scholar 

  46. Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Precigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15(1):25–37

    CAS  PubMed  Google Scholar 

  47. Han Z, Li X, Wu J, Olson EN (2004) A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proc Natl Acad Sci U S A 101:12567–12572

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Hawley JA, Hargreaves M, Zierath JR (2006) Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem 42:1–12

    CAS  PubMed  Google Scholar 

  49. Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170

    CAS  PubMed  Google Scholar 

  50. Hoshijima M (2006) Mechanical stress–strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290(4):H1313–H1325

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Irrcher I, Hood DA (2004) Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. J Appl Physiol 97(6):2207–2213

    CAS  PubMed  Google Scholar 

  52. Iwasaki K, Hayashi K, Fujioka T, Sobue K (2008) Rho/Rho-associated kinase signal regulates myogenic differentiation via myocardin-related transcription factor-A/Smad-dependent transcription of the Id3 gene. J Biol Chem 283(30):21230

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Iyer D, Belaguli N, Fluck M, Rowan BG, Wei L, Weigel NL, Booth FW, Epstein HF, Schwartz RJ, Balasubramanyam A (2003) Novel phosphorylation target in the serum response factor MADS box regulates alpha-actin transcription. Biochemistry 42(24):7477–7486

    CAS  PubMed  Google Scholar 

  54. Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin–proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4(3):183–190

    CAS  PubMed  Google Scholar 

  55. Janknecht R, Ernst WH, Pingoud V, Nordheim A (1993) Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J 12:5097–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Janknecht R, Hipskind RA, Houthaeve T, Nordheim A, Stunnenberg HG (1992) Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J 11:1045–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Jin W, Goldfine AB, Boes T, Henry RR, Ciaraldi TP, Kim EY, Emecan M, Fitzpatrick C, Sen A, Shah A, Mun E, Vokes V, Schroeder J, Tatro E, Jimenez-Chillaron J, Patti ME (2011) Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Investig 121(3):918–929

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    CAS  PubMed  Google Scholar 

  59. Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    CAS  PubMed  Google Scholar 

  60. Klossner S, Li R, Ruoss S, Durieux AC, Fluck M (2013) Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. Am J Physiol Regul Integr Comp Physiol 305(6):R647–R657

    CAS  PubMed  Google Scholar 

  61. Knoll R, Buyandelger B, Lab M (2011) The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011:569628

    PubMed Central  PubMed  Google Scholar 

  62. Kuwahara K, Barrientos T, Pipes GCT, Li S, Olson EN (2005) Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Mol Cell Biol 25:3173–3181

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kuwahara K, Pipes GC, McAnally J, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2007) Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J Clin Investig 117:1324–1334

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D (2008) Premature aging in skeletal muscle lacking serum response factor. PLoS One 3(12):e3910

    PubMed Central  PubMed  Google Scholar 

  65. Lamon S, Wallace MA, Leger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587(Pt 8):1795–1803

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lamon S, Wallace MA, Leger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587(8):1795–1803

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lamon S, Wallace MA, Stefanetti RJ, Rahbek SK, Vendelbo MH, Russell AP, Vissing K (2013) Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Archiv: European journal of physiology

  68. Lamon S, Wallace MA, Stefanetti RJ, Rahbek SK, Vendelbo MH, Russell AP, Vissing K (2013) Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Arch 465(9):1317–1325

    CAS  PubMed  Google Scholar 

  69. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308

  70. Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633

    PubMed Central  PubMed  Google Scholar 

  71. Lee TC, Chow KL, Fang P, Schwartz RJ (1991) Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 11(10):5090–5100

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(3):923–933

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD, Moxham J, Hopkinson NS, Polkey MI, Kemp PR (2012) Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 67(1):26–34

    PubMed Central  PubMed  Google Scholar 

  74. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A, Olson EN (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102:1082–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Liu HW, Halayko AJ, Fernandes DJ, Harmon GS, McCauley JA, Kocieniewski P, McConville J, Fu Y, Forsythe SM, Kogut P, Bellam S, Dowell M, Churchill J, Lesso H, Kassiri K, Mitchell RW, Hershenson MB, Camoretti-Mercado B, Solway J (2003) The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol 29:39–47

    CAS  PubMed  Google Scholar 

  76. MacNeil LG, Melov S, Hubbard AE, Baker SK, Tarnopolsky MA (2010) Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes. PLoS One 5(5):e10695

    PubMed Central  PubMed  Google Scholar 

  77. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    CAS  PubMed  Google Scholar 

  78. Mahadeva H, Brooks G, Lodwick D, Chong NW, Samani NJ (2002) ms1, a novel stress-responsive, muscle-specific gene that is up-regulated in the early stages of pressure overload-induced left ventricular hypertrophy. FEBS Lett 521:100–104

    CAS  PubMed  Google Scholar 

  79. McClung JM, Lee WJ, Thompson RW, Lowe LL, Carson JA (2003) RhoA induction by functional overload and nandrolone decanoate administration in rat skeletal muscle. Pflugers Arch-Eur J Physiol 447:345–355

    CAS  Google Scholar 

  80. McClung JM, Thompson RW, Lowe LL, Carson JA (2004) RhoA expression during recovery from skeletal muscle disuse. J Appl Physiol 96:1341–1348, Bethesda, MD: 1985

    CAS  PubMed  Google Scholar 

  81. Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–C81

    CAS  PubMed  Google Scholar 

  82. Miralles F, Posern G, Zaromytidou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    CAS  PubMed  Google Scholar 

  83. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin–proteasome pathway. N Engl J Med 335(25):1897–1905

    CAS  PubMed  Google Scholar 

  84. Mokalled MH, Johnson AN, Creemers EE, Olson EN (2012) MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 26(2):190–202

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Moore ML, Wang GL, Belaguli NS, Schwartz RJ, McMillin JB (2001) GATA-4 and serum response factor regulate transcription of the muscle-specific carnitine palmitoyltransferase I beta in rat heart. J Biol Chem 276(2):1026–1033

    CAS  PubMed  Google Scholar 

  86. Muehlich S, Wang R, Lee SM, Lewis TC, Dai C, Prywes R (2008) Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol Cell Biol 28(20):6302–6313

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Murai K, Treisman R (2002) Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1. Mol Cell Biol 22:7083–7092

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Narumiya S, Ishizaki T, Watanabe N (1997) Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410:68–72

    CAS  PubMed  Google Scholar 

  89. Niu Z, Yu W, Zhang SX, Barron M, Belaguli NS, Schneider MD, Parmacek M, Nordheim A, Schwartz RJ (2005) Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 280:32531–32538

    CAS  PubMed  Google Scholar 

  90. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Peng YB, Guan HP, Fan B, Zhao SH, Xu XW, Li K, Zhu MJ, Yerle M, Liu B (2008) Molecular characterization and expression pattern of the porcine STARS, a striated muscle-specific expressed gene. Biochem Genet 46(9–10):644–651

    CAS  PubMed  Google Scholar 

  92. Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20(12):1545–1556

    CAS  PubMed  Google Scholar 

  93. Pipes GCT, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556

    CAS  PubMed  Google Scholar 

  94. Pollanen E, Fey V, Tormakangas T, Ronkainen PH, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipila S, Kovanen V (2010) Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. Age 32(3):347–363

    PubMed Central  PubMed  Google Scholar 

  95. Posern G, Miralles F, Guettler S, Treisman R (2004) Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23:3973–3983

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Posern G, Sotiropoulos A, Treisman R (2002) Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell 13:4167–4178

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596

    CAS  PubMed  Google Scholar 

  98. Rando OJ, Zhao K, Crabtree GR (2000) Searching for a function for nuclear actin. Trends Cell Biol 10:92–97

    CAS  PubMed  Google Scholar 

  99. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    CAS  PubMed  Google Scholar 

  100. Rivera VM, Miranti CK, Misra RP, Ginty DD, Chen RH, Blenis J, Greenberg ME (1993) A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 13(10):6260–6273

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rose AJ, Frosig C, Kiens B, Wojtaszewski JF, Richter EA (2007) Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol 583(Pt 2):785–795

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Sakuma K, Akiho M, Nakashima H, Akima H, Yasuhara M (2008) Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta 1782(7–8):453–461

    CAS  PubMed  Google Scholar 

  103. Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Yasuhara M (2003) Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 119:149–160

    CAS  PubMed  Google Scholar 

  104. Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H (2009) The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol 197(2):151–159

    CAS  Google Scholar 

  105. Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14:305–338

    CAS  PubMed  Google Scholar 

  106. Selvaraj A, Prywes R (2003) Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. J Biol Chem 278:41977–41987

    CAS  PubMed  Google Scholar 

  107. Selvaraj A, Prywes R (2004) Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol Biol 5:13–27

    PubMed Central  PubMed  Google Scholar 

  108. Sipila S, Taaffe DR, Cheng S, Puolakka J, Toivanen J, Suominen H (2001) Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond) 101(2):147–157

    CAS  Google Scholar 

  109. Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. J Cell Biochem 94:225–231

    CAS  PubMed  Google Scholar 

  110. Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169

    CAS  PubMed  Google Scholar 

  111. Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr, Miano JM (2006) Defining the mammalian CArGome. Genome Res 16(2):197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y (1998) The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol 18:1580–1589

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Treisman R (1995) DNA-binding proteins. Inside the MADS box. Nature 376:468–469

    CAS  PubMed  Google Scholar 

  114. Troidl K, Ruding I, Cai WJ, Mucke Y, Grossekettler L, Piotrowska I, Apfelbeck H, Schierling W, Volger OL, Horrevoets AJ, Grote K, Schmitz-Rixen T, Schaper W, Troidl C (2009) Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis. Arterioscler Thromb Vasc Biol 29(12):2093–2101

    CAS  PubMed  Google Scholar 

  115. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    PubMed  Google Scholar 

  116. Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752

    CAS  PubMed  Google Scholar 

  117. Visegrady B, Machesky LM (2010) Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 427(1):41–48

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Vissing K, Rahbek SK, Lamon S, Farup J, Stefanetti RJ, Wallace MA, Vendelbo MH, Russell A (2013) Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J Physiol 591(Pt 15):3749–3763

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK (2006) Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 290(4):E694–E702

    CAS  PubMed  Google Scholar 

  120. Wallace MA, Hock MB, Hazen BC, Kralli A, Snow RJ, Russell AP (2011) Striated muscle activator of Rho signalling (STARS) is a PGC-1alpha/oestrogen-related receptor-alpha target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 589(Pt 8):2027–2039

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Wallace MA, Russell AP (2013) Striated muscle activator of Rho signaling (STARS) is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol

  122. Wallace MA, Russell AP (2013) Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol 305(4):C414–C426

    CAS  PubMed  Google Scholar 

  123. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862

    CAS  PubMed  Google Scholar 

  124. Wang D-Z, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN (2002) Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A 99:14855–14860

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Wang DZ, Olson EN (2004) Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev 14:558–566

    CAS  PubMed  Google Scholar 

  126. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189

    CAS  PubMed  Google Scholar 

  127. Wei L, Zhou W, Croissant JD, Johansen FE, Prywes R, Balasubramanyam A, Schwartz RJ (1998) RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem 273:30287–30294

    CAS  PubMed  Google Scholar 

  128. Wei L, Zhou W, Wang L, Schwartz RJ (2000) beta(1)-Integrin and PI 3-kinase regulate RhoA-dependent activation of skeletal alpha-actin promoter in myoblasts. Am J Physiol Heart Circ Physiol 278(6):H1736–H1743

    CAS  PubMed  Google Scholar 

  129. Williamson DL, Kubica N, Kimball SR, Jefferson LS (2006) Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol 573(Pt 2):497–510

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177

    CAS  PubMed  Google Scholar 

  131. Zhang SJ, Truskey GA, Kraus WE (2007) Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292(6):C2057–C2069

    CAS  PubMed  Google Scholar 

  132. Zhang X, Chai J, Azhar G, Sheridan P, Borras AM, Furr MC, Khrapko K, Lawitts J, Misra RP, Wei JY (2001) Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J Biol Chem 276:40033–40040

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Séverine Lamon is supported by an Alfred Deakin postdoctoral fellowship from Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Lamon.

Additional information

Lamon and Wallace contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamon, S., Wallace, M.A. & Russell, A.P. The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch - Eur J Physiol 466, 1659–1671 (2014). https://doi.org/10.1007/s00424-014-1475-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1475-5

Keywords

Navigation