Skip to main content
Log in

Golgi as an MTOC: making microtubules for its own good

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In cells, microtubules (MTs) are nucleated at MT-organizing centers (MTOCs). The centrosome-based MTOCs organize radial MT arrays, which are often not optimal for polarized trafficking. A recently discovered subset of non-centrosomal MTs nucleated at the Golgi has proven to be indispensable for the Golgi organization, post-Golgi trafficking and cell polarity. Here, we summarize the history of this discovery, known molecular prerequisites of MT nucleation at the Golgi and unique functions of Golgi-derived MTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anitei M, Wassmer T, Stange C, Hoflack B (2010) Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 27:443–456

    Article  PubMed  CAS  Google Scholar 

  • Baas PW (1998) The role of motor proteins in establishing the microtubule arrays of axons and dendrites. J Chem Neuroanat 14:175–180

    Article  PubMed  CAS  Google Scholar 

  • Brownhill K, Wood L, Allan V (2009) Molecular motors and the Golgi complex: staying put and moving through. Semin Cell Dev Biol 20:784–792

    Article  PubMed  CAS  Google Scholar 

  • Burd CG (2011) Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 12:948–955

    Article  PubMed  CAS  Google Scholar 

  • Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Pous C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12:2047–2060

    Article  PubMed  CAS  Google Scholar 

  • Corthesy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, Grosveld F, Galjart N (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Priess JR (2012) A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 22:575–582

    Article  PubMed  CAS  Google Scholar 

  • Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM (2011) Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J Cell Biol 193:917–933

    Article  PubMed  CAS  Google Scholar 

  • Khodjakov A, Rieder CL (1999) The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146:585–596

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Takahashi M, Matsuo K, Ono Y (2007) Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Genes Cells 12:421–434

    Article  PubMed  CAS  Google Scholar 

  • Larocca MC, Jin M, Goldenring JR (2006) AKAP350 modulates microtubule dynamics. Eur J Cell Biol 85:611–619

    Article  PubMed  CAS  Google Scholar 

  • Lin YC, Chiang TC, Liu YT, Tsai YT, Jang LT, Lee FJ (2011) ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci 124:4014–4026

    Article  PubMed  CAS  Google Scholar 

  • Magidson V, Loncarek J, Hergert P, Rieder CL, Khodjakov A (2007) Laser microsurgery in the GFP era: a cell biologist’s perspective. Methods Cell Biol 82:239–266

    PubMed  CAS  Google Scholar 

  • Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H (2012) Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 199:285–301

    Article  PubMed  CAS  Google Scholar 

  • Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I (2013) Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Cytoskeleton 70:32–43

    Article  PubMed  CAS  Google Scholar 

  • Malikov V, Kashina A, Rodionov V (2004) Cytoplasmic dynein nucleates microtubules to organize them into radial arrays in vivo. Mol Biol Cell 15:2742–2749

    Article  PubMed  CAS  Google Scholar 

  • Mattaloni SM, Kolobova E, Favre C, Marinelli RA, Goldenring JR, Larocca MC (2012) AKAP350 Is involved in the development of apical “canalicular” structures in hepatic cells HepG2. J Cell Physiol 227:160–171

    Article  PubMed  CAS  Google Scholar 

  • Meyer HH (2005) Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. Biochim Biophys Acta 1744:481–492

    Article  PubMed  Google Scholar 

  • Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113(Pt 17):3013–3023

    PubMed  CAS  Google Scholar 

  • Moreno-Mateos MA, Espina AG, Torres B, Gamez del Estal MM, Romero-Franco A, Rios RM, Pintor-Toro JA (2011) PTTG1/securin modulates microtubule nucleation and cell migration. Mol Biol Cell 22:4302–4311

    Article  PubMed  CAS  Google Scholar 

  • Moudjou M, Bordes N, Paintrand M, Bornens M (1996) Gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J Cell Sci 109(Pt 4):875–887

    PubMed  CAS  Google Scholar 

  • Moynihan KL, Pooley R, Miller PM, Kaverina I, Bader DM (2009) Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Mol Biol Cell 20(22):4790–4803. doi:10.1091/mbc.E09-07-0560

    Article  PubMed  CAS  Google Scholar 

  • Ori-McKenney KM, Jan LY, Jan YN (2012) Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76:921–930

    Article  PubMed  CAS  Google Scholar 

  • Piehl M, Tulu US, Wadsworth P, Cassimeris L (2004) Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci USA 101:1584–1588

    Article  PubMed  CAS  Google Scholar 

  • Prigozhina NL, Waterman-Storer CM (2004) Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol 14:88–98

    Article  PubMed  CAS  Google Scholar 

  • Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  PubMed  CAS  Google Scholar 

  • Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Warren G (2002) Golgi architecture and inheritance. Annu Rev Cell Dev Biol 18:379–420

    Article  PubMed  CAS  Google Scholar 

  • Stephens DJ (2012) Functional coupling of microtubules to membranes—implications for membrane structure and dynamics. J Cell Sci 125:2795–2804

    Article  PubMed  CAS  Google Scholar 

  • Sutterlin C, Colanzi A (2010) The Golgi and the centrosome: building a functional partnership. J Cell Biol 188:621–628

    Article  PubMed  CAS  Google Scholar 

  • Szul T, Sztul E (2011) COPII and COPI traffic at the ER-Golgi interface. Physiology 26:348–364

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 13:3235–3245

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Mar K, Warren G, Wang Y (2008) Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J Biol Chem 283:6085–6094

    Article  PubMed  CAS  Google Scholar 

  • Tassin AM, Maro B, Bornens M (1985) Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 100:35–46

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A, Sluder G (2007) Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176:173–182

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova T, Miller PM, Kaverina I (2009) Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8:2168–2174

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova T, Paul R, Grimaldi AD, Loncarek J, Miller PM, Yampolsky D, Magidson V, Khodjakov A, Mogilner A, Kaverina I (2012) Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Mol Biol Cell 23(5):820–833

    Article  PubMed  CAS  Google Scholar 

  • Watson P, Stephens DJ (2005) ER-to-Golgi transport: form and formation of vesicular and tubular carriers. Biochim Biophys Acta 1744:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wei JH, Seemann J (2009) Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 20:810–816

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Puri S, Linstedt AD (2009) A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell 20:1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Kaverina I (2011) Quantification of asymmetric microtubule nucleation at subcellular structures. Methods Mol Biol 777:235–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. V. Magidson and A. Khodjakov (Wadsworth Center, Albany, NY) for the permission to use images obtained from our collaboration and presented in Fig. 1. This work was supported by National Institutes of Health grant R01-GM078373 (to I.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kaverina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Kaverina, I. Golgi as an MTOC: making microtubules for its own good. Histochem Cell Biol 140, 361–367 (2013). https://doi.org/10.1007/s00418-013-1119-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1119-4

Keywords

Navigation