Skip to main content
Log in

Relocalization of a microtubule-anchoring protein, ninein, from the centrosome to dendrites during differentiation of mouse neurons

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Microtubules in typical cells form radial arrays with their plus-ends pointing toward the cell periphery. In contrast, microtubules in dendrites of neurons are free from centrosomes and have a unique arrangement in which about half have a polarity with a minus-end distal orientation. Mechanisms for generation and maintenance of the microtubule arrangement in dendrites are not well understood. Here, we examined dendritic localization of a centrosomal protein, ninein, which has microtubule-anchoring and stabilizing functions. Immunohistochemical analysis of developing mouse cerebral and cerebellar cortices showed that ninein is localized at the centrosome in undifferentiated neural precursors. In contrast, ninein was barely detected in migrating neurons, such as those in the intermediate layer of the cerebral cortex and the internal granular layer of the cerebellar cortex. High expression was observed in thick dendrite-bearing neurons such as pyramidal neurons of the cerebral cortex and Purkinje neurons in the cerebellar cortex. Ninein was not detected at the centrosome of these cells, but was diffusely present in cell soma and dendrites. In cultured cortical neurons, ninein formed granular structures in soma and dendrites, being not associated with γ-tubulin. About 60% of these structures showed resistance to detergent and association with microtubules. Our observations suggest that the minus-ends of microtubules may be anchored and stabilized by centrosomal proteins localized in dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baas PW, Buster DW (2004) Slow axonal transport and the genesis of neuronal morphology. J Neurobiol 58:3–17

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci USA 85:8335–8339

    Article  CAS  PubMed  Google Scholar 

  • Baird DH, Myers KA, Mogensen M, Moss D, Baas PW (2004) Distribution of microtubule-related protein ninein in developing neurons. Neuropharmacology 47:677–683

    Article  CAS  PubMed  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    Article  CAS  PubMed  Google Scholar 

  • Bouckson-Castaing V, Moudjou M, Ferguson DJP, Mucklow S, Belkaid Y, Milon G, Crocker PR (1996) Molecular characterization of ninein, a new coiled-coil protein of the centrosome. J Cell Sci 109:179–190

    CAS  PubMed  Google Scholar 

  • Bugnard E, Zaal KJM, Ralston E (2005) Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 60:1–13

    Article  PubMed  Google Scholar 

  • Burack MA, Silverman MA, Banker G (2000) The role of selective transport in neuronal protein sorting. Neuron 26:465–472

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Howng SL, Cheng TS, Chou MH, Huang CY, Hong YR (2003) Molecular characterization of human ninein protein: two distinct subdomains required for centrosomal targeting and regulating signals in cell cycle. Biolchem Biophys Res Commun 308:975–983

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dahm R, Procter JE, Ireland ME, Mogensen MM, Lo WK, Quinlan RA, Prescott AR (2007) Reorganization of centrosomal marker proteins coincides with epithelial cell differentiation in the vertebrate lens. Exp Eye Res 85:696–713

    Article  CAS  PubMed  Google Scholar 

  • Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266

    Article  CAS  PubMed  Google Scholar 

  • Dammermann A, Desai A, Oegema K (2003) The minus end in sight. Curr Biol 13:R614–R624

    Article  CAS  PubMed  Google Scholar 

  • Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Palazzo RE, Rebhun LI (1993) Preferential dendritic localization of pericentriolar material in hippocampal pyramidal neurons in culture. Cell Motil Cytoskeleton 25:336–344

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Kawai-Hirai R, Ishikawa K, Tanaka K (2002) Reversal of neuronal polarity characterized by conversion of dendrites into axons in neonatal rat cortical neurons in vitro. Neuroscience 110:7–17

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Kawai-Hirai R, Harada A, Takata K (2003) Inhibitory neurons from fetal rat cerebral cortex exert delayed axon formation and active migration in vitro. J Cell Sci 116:4419–4428

    Article  CAS  PubMed  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283

    Article  CAS  PubMed  Google Scholar 

  • Krauss SW, Spence JR, Bhmanyar S, Barth AI, Go MM, Czerwinski D, Meyer AJ (2008) Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase. Mol Cell Biol 28:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Obrietan K, Stearns T (1997) Synaptically coupled central nervous system neurons lack centrosomal γ-tubulin. Neurosci Lett 229:17–20

    Article  CAS  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2007) Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J Cell Biol 176:147–154

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Shiller P, Deiterich LC, Bahram F, Iribe Y, Hellman U, Widner C, Chen G, Cleasson-Welsh L, Dimberg A (2008) Ninein is expressed in the cytoplasm of angiogenic tip-cells and regulates tubular morphogenesis of endothelial cells. Arterioscler Thromb Vasc Biol 28:2123–2130

    Article  CAS  PubMed  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal site: the role of ninein. J Cell Sci 113:3013–3023

    CAS  PubMed  Google Scholar 

  • Moss DK, Bellet G, Carter JM, Liovic M, Keynton J, Prescott AR, Lane EB, Mogensen MM (2007) Ninein is released from the centrosome and moves bi-directionally along microtubules. J Cell Sci 120:3064–3074

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  • Ou YY, Mack GJ, Zhang M, Rattner JB (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115:1825–1835

    CAS  PubMed  Google Scholar 

  • Rusan NM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177:13–20

    Article  CAS  PubMed  Google Scholar 

  • Sharp DJ, Yu W, Ferhat L, Kuriyama R, Ruerer DC, Baas PW (1997) Identification of microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138:833–843

    Article  CAS  PubMed  Google Scholar 

  • Takahashi D, Yu W, Baas PW, Kawai-Hirai R, Hayashi K (2007) Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons. Cell Motil Cytoskeleton 64:347–359

    Article  PubMed  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46:383–388

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Moy LY, Sanada K, Zhou Y, Buchmen JJ, Tsai L-H (2007) Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56:79–93

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Centonze VE, Ahmad FJ, Baas PW (1993) Microtubule nucleation and release from the neuronal centrosome. J Cell Biol 122:349–359

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (2000) Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J Neurosci 20:5782–5791

    CAS  PubMed  Google Scholar 

  • Zheng Y, Wildonger J, Ye B, Zheng Y, Kita A, Younger SH, Zimmerman S, Jan LY, Jan YN (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants 16500193 and 16027207 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohama, Y., Hayashi, K. Relocalization of a microtubule-anchoring protein, ninein, from the centrosome to dendrites during differentiation of mouse neurons. Histochem Cell Biol 132, 515–524 (2009). https://doi.org/10.1007/s00418-009-0631-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0631-z

Keywords

Navigation