Skip to main content

Advertisement

Log in

PRRT2-related disorders: further PKD and ICCA cases and review of the literature

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recent studies reported mutations in the gene encoding the proline-rich transmembrane protein 2 (PRRT2) to be causative for paroxysmal kinesigenic dyskinesia (PKD), PKD combined with infantile seizures (ICCA), and benign familial infantile seizures (BFIS). PRRT2 is a presynaptic protein which seems to play an important role in exocytosis and neurotransmitter release. PKD is the most common form of paroxysmal movement disorder characterized by recurrent brief involuntary hyperkinesias triggered by sudden movements. Here, we sequenced PRRT2 in 14 sporadic and 8 familial PKD and ICCA cases of Caucasian origin and identified three novel mutations (c.919C>T/p.Gln307*, c.388delG/p.Ala130Profs*46, c.884G>A/p.Arg295Gln) predicting two truncated proteins and one probably damaging point mutation. A review of all published cases is also included. PRRT2 mutations occur more frequently in familial forms of PRRT2-related syndromes (80–100 %) than in sporadic cases (33-46 %) suggesting further heterogeneity in the latter. PRRT2 mutations were rarely described in other forms of paroxysmal dyskinesias deviating from classical PKD, as we report here in one ICCA family without kinesigenic triggers. Mutations are exclusively found in two exons of the PRRT2 gene at a high rate across all syndromes and with one major mutation (c.649dupC) in a mutational hotspot of nine cytosines, which is responsible for 57 % of all cases in all phenotypes. We therefore propose that genetic analysis rapidly performed in early stages of the disease is highly cost-effective and can help to avoid further unnecessary diagnostic and therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zenzola A, De Mari M, De Blasi R et al (2001) Paroxysmal dystonia with thalamic lesion in multiple sclerosis. Neurol Sci 22:391–394

    Article  PubMed  CAS  Google Scholar 

  2. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118(6):2157–2168

    PubMed  CAS  Google Scholar 

  3. Suls A, Dedeken P, Goffin K et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131(Pt 7):1831–1844. Epub Jun 24

    Google Scholar 

  4. Rainier S, Thomas D, Tokarz D et al (2004) Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 61:1025–1029

    Article  PubMed  Google Scholar 

  5. Lee HY, Nakayama J, Xu Y et al (2012) Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 122(2):507–518

    Article  PubMed  CAS  Google Scholar 

  6. Smith LA, Heersma PH (1941) Periodic dystonia. May Clin Proc 16:842–846

    Google Scholar 

  7. Weber MB (1967) Familial paroxysmal dystonia. J Nerv Ment Dis 145:221–226

    Article  PubMed  CAS  Google Scholar 

  8. Kertesz A (1967) Paroxysmal kinesigenic choreoathetosis. Neurology 17:680–690

    Article  PubMed  CAS  Google Scholar 

  9. Goodenough DJ, Fariello RG, Annis BL et al (1978) Familial and acquired paroxysmal dyskinesias: a proposed classification with delineation of clinical features. Arch Neurol 35(12):827–831

    Article  PubMed  CAS  Google Scholar 

  10. Perona-Moratalla AB, Argandoña L, García-Muñozguren S (2009) Paroxysmal dyskinesias. Rev Neurol 48(Suppl 1):S7–S9

    PubMed  Google Scholar 

  11. Chen WJ, Lin Y, Xiong ZQ et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255

    Article  PubMed  CAS  Google Scholar 

  12. Heron SE, Grinton BE, Kivity S et al (2012) PRRT2 Mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90:152–160

    Article  PubMed  CAS  Google Scholar 

  13. Lee HY, Huang Y, Bruneau N et al (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Reports 1:1–11

    Article  Google Scholar 

  14. Li J, Zhu X, Wang X et al (2012) Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. Med Genet 49:76–78

    Article  CAS  Google Scholar 

  15. Wang JL, Cao L, Li XH et al (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134:3490–3498

    Google Scholar 

  16. Schubert J, Paravidino R, Becker F et al (2012) PRRT2 mutations are the major cause of benign familial infantile seizures (BFIS). Hum Mutat (Epub ahead of print)

  17. Méneret A, Grabli D, Depienne C et al (2012) PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 79:170–174

    Article  PubMed  Google Scholar 

  18. Liu Q, Qi Z, Wan XH et al (2012) Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet 49:79–82

    Article  PubMed  CAS  Google Scholar 

  19. Groffen AJ, Klapwijk T, van Rootselaar AF et al (2012) Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol (Epub ahead of print)

  20. Cao L, Huang XJ, Zheng L et al (2012) Identification of a novel PRRT2 mutation in patients with paroxysmal kinesigenic dyskinesias and c.649dupC as a mutation hot-spot. Parkinsonism Relat Disord 18(5):704–706

    Article  PubMed  Google Scholar 

  21. Ono S, Yoshiura K, Kinoshita A (2012) Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 57(5):338–341

    Article  PubMed  CAS  Google Scholar 

  22. van Vliet R, Breedveld G, de Rijk-van Andel J et al (2012) PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology. (Epub ahead of print)

  23. Lee YC, Lee MJ, Yu HY et al (2012) PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a taiwanese cohort. PLoS ONE 7(8):e38543. doi:10.1371/journal.pone.0038543

  24. Gardiner AR, Bhatia KP, Stamelou M et al (2012) PRRT2 gene mutations: From paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 79(21):2115–2121

    Google Scholar 

  25. Dale RC, Gardiner A, Antony J, et al (2012) Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol (Epub ahead of print)

  26. Weber YG, Berger A, Bebek N et al (2004) Benign familial infantile convulsions: linkage to chromosome 16p12-q12 in 14 families. Epilepsia 45(6):601–609

    Article  PubMed  CAS  Google Scholar 

  27. Sørensen JB, Matti U, Wei SH et al (2002) The SNARE proteinSNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99:1627–1632

    Article  PubMed  Google Scholar 

  28. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

  29. Bruno MK, Lee HY, Auburger GW et al (2007) Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 68(21):1782–1789

    Article  PubMed  CAS  Google Scholar 

  30. Demirkiran M, Jankovic J (1995) Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 38:571–579

    Article  PubMed  CAS  Google Scholar 

  31. Houser MK, Soland VL, Bhatia KP et al (1999) Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J Neurol 246(2):120–126

    Article  PubMed  CAS  Google Scholar 

  32. Plant GT, Williams AC, Earl CJ et al (1984) Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry 47:275–279

    Article  PubMed  CAS  Google Scholar 

  33. Wali GM (1992) Paroxysmal hemidystonia induced by prolonged exercise and cold. J Neurol Neurosurg Psychiatry 55(3):236–237

    Article  PubMed  CAS  Google Scholar 

  34. Bruno MK, Hallett M, Gwinn-Hardy K et al (2004) Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 63(12):2280–2287

    Article  PubMed  CAS  Google Scholar 

  35. Kikuchi T, Nomura M, Tomita H et al (2007) Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet 52(4):334–341 (Epub 2007 Feb 14)

    Google Scholar 

  36. Liao Y, Deprez L, Maljevic S et al (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133(Pt 5):1403–1414

    Article  PubMed  Google Scholar 

  37. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  PubMed  CAS  Google Scholar 

  38. Hu K, Carroll J, Fedorovich S et al (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650

    Article  PubMed  CAS  Google Scholar 

  39. Zhao N, Hashida H, Takahashi N et al (1994) Cloning and sequence analysis of the human SNAP25 cDNA. Gene 145:313–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all patients and their relatives for participation in this study and the following clinicians for supporting the recruitment of the Italian patients: Mauro Brunetta, Pediatric Neurology, Ospedale di Cava de `Tirreni, Salerno, Italy; Biayna Sukhudyan, Pediatric Neurology, Arabkir Medical Center, Yerevan, Armenia; Marilena Vecchi, Department of Paediatrics, University of Padua, Padua, Italy; Francesca Vanadia, Child Neuropsychiatry, Ospedale Civico “E.-Benfratelli”, Palermo, Italy; Bernardo Dalla Bernardina, Child Neuropsychiatry Unit, G.B. Rossi Hospital, University of Verona, Verona, Italy. We thank Yasemin Colakoglu and Hella Hellgren for technical assistance with PRRT2 sequencing and Snezana Maljevic for text style corrections. This project was supported by grants from the National Genome Network of the Federal Ministry for Education and Research (BMBF: NGFNplus/01GS08123 to HL), the European Union (Epicure: LSH 037315 to HL, FZ and AEL), the German Research Foundation (DFG Le1030/11-1 to HL). We thank the Italian League Against Epilepsy and the German Society for Epileptology for supporting the recruitment of families.

Conflicts of interest

None of the authors has a potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne G. Weber.

Additional information

F. Becker and J. Schubert are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, F., Schubert, J., Striano, P. et al. PRRT2-related disorders: further PKD and ICCA cases and review of the literature. J Neurol 260, 1234–1244 (2013). https://doi.org/10.1007/s00415-012-6777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6777-y

Keywords

Navigation