Skip to main content
Log in

Impediments to replication fork movement: stabilisation, reactivation and genome instability

  • Review Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Maintaining genome stability is essential for the accurate transmission of genetic material. Genetic instability is associated with human genome disorders and is a near-universal hallmark of cancer cells. Genetic variation is also the driving force of evolution, and a genome must therefore display adequate plasticity to evolve while remaining sufficiently stable to prevent mutations and chromosome rearrangements leading to a fitness disadvantage. A primary source of genome instability are errors that occur during chromosome replication. More specifically, obstacles to the movement of replication forks are known to underlie many of the gross chromosomal rearrangements seen both in human cells and in model organisms. Obstacles to replication fork progression destabilize the replisome (replication protein complex) and impact on the integrity of forked DNA structures. Therefore, to ensure the successful progression of a replication fork along with its associated replisome, several distinct strategies have evolved. First, there are well-orchestrated mechanisms that promote continued movement of forks through potential obstacles. Second, dedicated replisome and fork DNA stabilization pathways prevent the dysfunction of the replisome if its progress is halted. Third, should stabilisation fail, there are mechanisms to ensure damaged forks are accurately fused with a converging fork or, when necessary, re-associated with the replication proteins to continue replication. Here, we review what is known about potential barriers to replication fork progression, how these are tolerated and their impact on genome instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Molecular cell 46:115–124

    Article  PubMed  CAS  Google Scholar 

  • Aguilera A, Gomez-Gonzalez B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217

    Article  PubMed  CAS  Google Scholar 

  • Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24:2011–2023

    Article  PubMed  CAS  Google Scholar 

  • Ansari A, Hampsey M (2005) A role for the CPF 3-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19:2969–2978

    Article  PubMed  CAS  Google Scholar 

  • Arcangioli B, Klar AJ (1991) A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient mat1 switching in Schizosaccharomyces pombe. EMBO J 10:3025–3032

    PubMed  CAS  Google Scholar 

  • Arlt MF, Wilson TE, Glover TW (2012) Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev 22:204–210

    Article  PubMed  CAS  Google Scholar 

  • Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA (2006) The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 20:3104–3116

    Article  PubMed  CAS  Google Scholar 

  • Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Molecular cell 34:722–734

    Article  PubMed  CAS  Google Scholar 

  • Bacolla A, Wojciechowska M, Kosmider B, Larson JE, Wells RD (2006) The involvement of non-B DNA structures in gross chromosomal rearrangements. DNA Repair 5:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Bastia D, Singh SK (2011) “Chromosome kissing” and modulation of replication termination. Bioarchitecture 1:24–28

    Article  PubMed  Google Scholar 

  • Bermejo R, Capra T, Jossen R, Colosio A, Frattini C, Carotenuto W, Cocito A, Doksani Y, Klein H, Gomez-Gonzalez B et al (2011) The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–246

    Article  PubMed  CAS  Google Scholar 

  • Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Bastia D (2008) Mechanistic insights into replication termination as revealed by investigations of the Reb1-Ter3 complex of Schizosaccharomyces pombe. Mol Cell Biol 28:6844–6857

    Article  PubMed  CAS  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82:8527–8529

    Article  PubMed  CAS  Google Scholar 

  • Blumrich A, Zapatka M, Brueckner LM, Zheglo D, Schwab M, Savelyeva L (2011) The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 20:1488–1501

    Article  PubMed  CAS  Google Scholar 

  • Bochman ML, Sabouri N, Zakian VA (2010) Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 9:237–249

    Article  CAS  Google Scholar 

  • Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29:145–157

    Article  PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  PubMed  CAS  Google Scholar 

  • Budzowska M, Kanaar R (2009) Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53:17–31

    Article  PubMed  CAS  Google Scholar 

  • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052

    Article  PubMed  CAS  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC et al (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–773

    Article  PubMed  CAS  Google Scholar 

  • Chen JD, Pirrotta V (1993) Multimerization of the Drosophila zeste protein is required for efficient DNA binding. EMBO J 12:2075–2083

    PubMed  CAS  Google Scholar 

  • Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336

    Article  PubMed  CAS  Google Scholar 

  • Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19:3055–3069

    Article  PubMed  CAS  Google Scholar 

  • Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–926

    Article  PubMed  CAS  Google Scholar 

  • Costanzo V (2011) Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA Repair 10:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M (2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Molecular cell 17:153–159

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Klar AJ (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev 15:2060–2068

    Article  PubMed  CAS  Google Scholar 

  • De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K (2012) Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Molecular cell 45:696–704

    Article  PubMed  CAS  Google Scholar 

  • Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32

    Article  PubMed  CAS  Google Scholar 

  • Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Doksani Y, Bermejo R, Fiorani S, Haber JE, Foiani M (2009) Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137:247–258

    Article  PubMed  CAS  Google Scholar 

  • Dronkert ML, Kanaar R (2001) Repair of DNA interstrand cross-links. Mutat Res 486:217–247

    Article  PubMed  CAS  Google Scholar 

  • Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A (2011) Tight protein–DNA interactions favor gene silencing. Genes Dev 25:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  PubMed  CAS  Google Scholar 

  • Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW (2008) Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci U S A 105:246–251

    Article  PubMed  CAS  Google Scholar 

  • Egel R (2005) Fission yeast mating-type switching: programmed damage and repair. DNA Repair 4:525–536

    Article  PubMed  CAS  Google Scholar 

  • Eydmann T, Sommariva E, Inagawa T, Mian S, Klar AJ, Dalgaard JZ (2008) Rtf1-mediated eukaryotic site-specific replication termination. Genetics 180:27–39

    Article  PubMed  CAS  Google Scholar 

  • Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39:595–605

    Article  PubMed  CAS  Google Scholar 

  • Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21:3331–3341

    Article  PubMed  CAS  Google Scholar 

  • Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    Article  PubMed  CAS  Google Scholar 

  • Goldfless SJ, Morag AS, Belisle KA, Sutera VA Jr, Lovett ST (2006) DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 21:595–604

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marin A, Foiani M, Aguilera A (2011) Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 30:3106–3119

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25:4921–4932

    Article  PubMed  CAS  Google Scholar 

  • Hashash N, Johnson AL, Cha RS (2011) Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea. Journal of cell science 124:181–185

    Article  PubMed  CAS  Google Scholar 

  • Hashash N, Johnson AL, Cha RS (2012) Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genetics 8:e1002978

    Article  PubMed  CAS  Google Scholar 

  • Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    Article  PubMed  CAS  Google Scholar 

  • Helmrich A, Stout-Weider K, Hermann K, Schrock E, Heiden T (2006) Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res 16:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Sun L, Shen F, Chen Y, Hua Y, Liu Y, Zhang M, Hu Y, Wang Q, Xu W et al (2012) The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Kim JM, Shiotani B, Yang K, Zou L, D’Andrea AD (2010) The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 39:259–268

    Article  PubMed  CAS  Google Scholar 

  • Inagawa T, Yamada-Inagawa T, Eydmann T, Mian IS, Wang TS, Dalgaard JZ (2009) Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart. Proc Natl Acad Sci U S A 106:7927–7932

    Article  PubMed  CAS  Google Scholar 

  • Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein–DNA complexes. Molecular cell 12:1525–1536

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T, Rest JS, Le Beau MM (2009) Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 18:4501–4512

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DL, Bastia D (2009) Mechanisms of polar arrest of a replication fork. Mol Microbiol 72:279–285

    Article  PubMed  CAS  Google Scholar 

  • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41:543–553

    Article  PubMed  CAS  Google Scholar 

  • Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69:829–880

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, Mirkin SM, Lobachev KS (2008) Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 27:2896–2906

    Article  PubMed  CAS  Google Scholar 

  • Krasilnikova MM, Mirkin SM (2004) Replication stalling at Friedreich’s ataxia (GAA)n repeats in vivo. Mol Cell Biol 24:2286–2295

    Article  PubMed  CAS  Google Scholar 

  • Labib K (2010) How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24:1208–1219

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87:591–602

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Mason SJ, Barber LJ, Hartley JA, Pearce JA, Carr AM, McHugh PJ (2003) Schizosaccharomyces pombe checkpoint response to DNA interstrand cross-links. Mol Cell Biol 23:4728–4737

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Froget B, Carr AM (2007) Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair 6:1042–1061

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K, Murray JM, Carr AM, Baldacci G (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39:346–359

    Article  PubMed  CAS  Google Scholar 

  • Le Tallec B, Dutrillaux B, Lachages AM, Millot GA, Brison O, Debatisse M (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18:1421–1423

    Article  PubMed  CAS  Google Scholar 

  • Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123

    Article  PubMed  CAS  Google Scholar 

  • Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD, Resnick MA, Gordenin DA (1998) Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148:1507–1524

    PubMed  CAS  Google Scholar 

  • Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830

    Article  PubMed  CAS  Google Scholar 

  • Lobachev KS, Rattray A, Narayanan V (2007) Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front Biosci 12:4208–4220

    Article  PubMed  CAS  Google Scholar 

  • Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333:84–87

    Article  PubMed  CAS  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  PubMed  CAS  Google Scholar 

  • Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    Article  PubMed  CAS  Google Scholar 

  • Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046

    Article  PubMed  CAS  Google Scholar 

  • Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC (2009) Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 29:4742–4756

    Article  PubMed  CAS  Google Scholar 

  • Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Lygeros J, Koutroumpas K, Dimopoulos S, Legouras I, Kouretas P, Heichinger C, Nurse P, Lygerou Z (2008) Stochastic hybrid modeling of DNA replication across a complete genome. Proc Natl Acad Sci U S A 105:12295–12300

    Article  PubMed  CAS  Google Scholar 

  • McGlynn P (2011) Helicases that underpin replication of protein-bound DNA in Escherichia coli. Biochem Soc Trans 39:606–610

    Article  PubMed  CAS  Google Scholar 

  • McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799

    Article  PubMed  CAS  Google Scholar 

  • Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738

    Article  PubMed  CAS  Google Scholar 

  • Minca EC, Kowalski D (2010) Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Molecular cell 38:649–661

    Article  PubMed  CAS  Google Scholar 

  • Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16:351–358

    Article  PubMed  CAS  Google Scholar 

  • Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM (2009) Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23:2876–2886

    Article  PubMed  CAS  Google Scholar 

  • Mohanty BK, Bairwa NK, Bastia D (2006) The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:897–902

    Article  PubMed  CAS  Google Scholar 

  • Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408

    Article  PubMed  CAS  Google Scholar 

  • Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43:122–131

    Article  PubMed  CAS  Google Scholar 

  • Ozeri-Galai E, Bester AC, Kerem B (2012) The complex basis underlying common fragile site instability in cancer. Trends Genet 28:295–302

    Article  PubMed  CAS  Google Scholar 

  • Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T (2009) Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 23:2861–2875

    Article  PubMed  CAS  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti A, Lucas I, Jiang Y, Young DJ, Fernald AA, Karrison T, Le Beau MM (2010) Impaired replication dynamics at the FRA3B common fragile site. Hum Mol Genet 19:99–110

    Article  PubMed  CAS  Google Scholar 

  • Pelliccia F, Bosco N, Rocchi A (2010) Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562—molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 299:37–44

    Article  PubMed  CAS  Google Scholar 

  • Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11:683–687

    Article  PubMed  CAS  Google Scholar 

  • Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37:492–502

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz RT, O’Donnell M (2010) What happens when replication and transcription complexes collide? Cell Cycle 9:2537–2543

    Article  PubMed  CAS  Google Scholar 

  • Possoz C, Filipe SR, Grainge I, Sherratt DJ (2006) Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25:2596–2604

    Article  PubMed  CAS  Google Scholar 

  • Prado F, Aguilera A (2005) Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 24:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Pryce DW, Ramayah S, Jaendling A, McFarlane RJ (2009) Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci U S A 106:4770–4775

    Article  PubMed  CAS  Google Scholar 

  • Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423

    Article  PubMed  CAS  Google Scholar 

  • Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475

    Article  PubMed  CAS  Google Scholar 

  • Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  PubMed  CAS  Google Scholar 

  • Roseaulin L, Yamada Y, Tsutsui Y, Russell P, Iwasaki H, Arcangioli B (2008) Mus81 is essential for sister chromatid recombination at broken replication forks. EMBO J 27:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Rozenzhak S, Mejia-Ramirez E, Williams JS, Schaffer L, Hammond JA, Head SR, Russell P (2010) Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-phase in fission yeast. PLoS Genet 6:e1001032

    Article  PubMed  CAS  Google Scholar 

  • Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26:581–593

    Article  PubMed  CAS  Google Scholar 

  • Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35:82–92

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR (1994) DNA structure and function. Academic, San Diego, xxiii, 398

    Google Scholar 

  • Singh SK, Sabatinos S, Forsburg S, Bastia D (2010) Regulation of replication termination by Reb1 protein-mediated action at a distance. Cell 142:868–878

    Article  PubMed  CAS  Google Scholar 

  • Smith DI, McAvoy S, Zhu Y, Perez DS (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17:31–41

    Article  PubMed  CAS  Google Scholar 

  • Sofueva S, Osman F, Lorenz A, Steinacher R, Castagnetti S, Ledesma J, Whitby MC (2011) Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic Acids Res 39:6568–6584

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  PubMed  CAS  Google Scholar 

  • Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810

    Article  PubMed  CAS  Google Scholar 

  • Steinacher R, Osman F, Dalgaard JZ, Lorenz A, Whitby MC (2012) The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 26:594–602

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC (2008) The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol Cell 32:118–128

    Article  PubMed  CAS  Google Scholar 

  • Szilard RK, Jacques PE, Laramee L, Cheng B, Galicia S, Bataille AR, Yeung M, Mendez M, Bergeron M, Robert F et al (2010) Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat Struct Mol Biol 17:299–305

    Article  PubMed  CAS  Google Scholar 

  • Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557

    Article  PubMed  CAS  Google Scholar 

  • Torres JZ, Bessler JB, Zakian VA (2004a) Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 18:498–503

    Article  PubMed  CAS  Google Scholar 

  • Torres JZ, Schnakenberg SL, Zakian VA (2004b) Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24:3198–3212

    Article  PubMed  CAS  Google Scholar 

  • Tsang E, Carr AM (2008) Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair 7:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD (2011) Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett 585:2861–2867

    Article  PubMed  CAS  Google Scholar 

  • Vazquez MV, Rojas V, Tercero JA (2008) Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA. DNA Repair 7:1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci U S A 105:9936–9941

    Article  PubMed  CAS  Google Scholar 

  • Wang JD, Berkmen MB, Grossman AD (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104:5608–5613

    Article  PubMed  CAS  Google Scholar 

  • Weinert T, Kaochar S, Jones H, Paek A, Clark AJ (2009) The replication fork’s five degrees of freedom, their failure and genome rearrangements. Curr Opin Cell Biol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  • Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22:1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683

    Article  PubMed  CAS  Google Scholar 

  • Yeeles JT, Marians KJ (2011) The Escherichia coli replisome is inherently DNA damage tolerant. Science 334:235–238

    Article  PubMed  CAS  Google Scholar 

  • Zahn KE, Wallace SS, Doublie S (2011) DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Curr Opin Struct Biol 21:358–369

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379

    Article  PubMed  CAS  Google Scholar 

  • Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B (2003) Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 23:7143–7151

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony M. Carr.

Additional information

Communicated by Erich Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, S., Carr, A.M. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 122, 33–45 (2013). https://doi.org/10.1007/s00412-013-0398-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0398-9

Keywords

Navigation