Skip to main content
Log in

Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Meiotic recombination proceeds in biochemical complexes that are physically associated with underlying chromosome structural axes. In this study, we discuss the organizational basis for these axes, the timing and nature of recombinosome/axis organization with respect to the prophase program of DNA and to structural changes, and the possible significance of axis organization. Furthermore, we discuss implications and extensions of our recently proposed mechanical model for chiasma formation. Finally, we give a broader consideration to past and present models for the role of the synaptonemal complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It has been proposed that the relationship of DNA events to cytological stages might be different in Drosophila from that described above as the general case. Specifically, it has been suggested that DSBs occur after SC formation (McKim et al. 2002). The primary direct evidence for this view is that gamma-H2AX foci, which mark the sites of both mitotic and meiotic DSBs, can be observed only at pachytene. However, this finding would imply only that SCs form very rapidly after DSB formation, e.g., with little or no “bridge stage.” Alternatively, gamma-H2AX foci have recently been reported also to occur during the pachytene stage in grasshopper (Viera et al. 2004) as a second wave, separate from the late leptotene wave. This raises the additional possibility that, for some reason, only the later foci are detected in Drosophila, thus leading to mistiming of DSB formation.

Abbreviations

L:

leptotene

Z:

zygotene

P:

pachytene

EP:

early pachytene

MP:

middle pachytene

LP:

late pachytene

References

  • Alani E, Padmore R, Kleckner N (1990) Analysis of wild type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436

    Article  PubMed  CAS  Google Scholar 

  • Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95:324–338

    Article  Google Scholar 

  • Allers T, Lichten M (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Royer SM, Page SL, McKim KS, Lai A, Lilly MA, Hawley RS (2005) Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 102:4482–4487

    Article  PubMed  CAS  Google Scholar 

  • Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 40:184–194

    Article  PubMed  CAS  Google Scholar 

  • Barlow AL, Hulten MA (1998) Crossing over analysis at pachytene in man. Eur J Hum Genet 6:350–358

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD (1977) The time and duration of meiosis. Philos Trans R Soc Lond B 277:201–226

    Article  CAS  Google Scholar 

  • Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickinson HG, Dean C (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19:463–472

    Article  PubMed  CAS  Google Scholar 

  • Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    Article  PubMed  CAS  Google Scholar 

  • Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of bacterial recA required for meiotic recombination, synaptonemal complex formation and cell cycle progression. Cell 69:439–456

    Article  PubMed  CAS  Google Scholar 

  • Blat Y, Protacio R, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802

    Article  PubMed  CAS  Google Scholar 

  • Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    Article  PubMed  Google Scholar 

  • Carpenter AT (1975) Electron microscopy of meiosis in Drosophila melanogaster females: II. The recombination nodule—a recombination-associated structure at pachytene? Proc Natl Acad Sci U S A 72:3186–3189

    Article  PubMed  CAS  Google Scholar 

  • Carpenter AT (1981) EM autoradiographic evidence that DNA synthesis occurs at recombination nodules during meiosis in Drosophila melanogaster females. Chromosoma 83:59–80

    Article  PubMed  CAS  Google Scholar 

  • Carpenter ATC (1987) Gene conversion, recombination nodules, and the initiation of meiotic synapsis. BioEssays 6:232–236

    Article  PubMed  CAS  Google Scholar 

  • Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Housworth EA, Stahl FW (2002) Crossover interference in Arabidopsis. Genetics 160:1631–1639

    PubMed  CAS  Google Scholar 

  • Dawe RK, Sedat JW, Agard DA, Cande WZ (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76:901–912

    Article  PubMed  CAS  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    Article  PubMed  CAS  Google Scholar 

  • Dresser ME, Moses MJ (1980) Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma 76:1–22

    Article  PubMed  CAS  Google Scholar 

  • Egel R (1995) The synaptonemal complex and the distribution of meiotic recombination events. Trends Genet 11:206–208

    Article  PubMed  CAS  Google Scholar 

  • Egel-Mitani M, Olson LW, Egel R (1982) Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas 97:179–187

    PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  PubMed  CAS  Google Scholar 

  • Ellermeier C, Smith GR (2005) Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 102:10952–10957

    Article  PubMed  CAS  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    Article  PubMed  CAS  Google Scholar 

  • Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Abian JF, Clarke DJ, Mullinger AM, Downes CS, Johnson RT (1995) A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J Cell Biol 131:7–17

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  CAS  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    Article  PubMed  CAS  Google Scholar 

  • Heyting C (2005) Meiotic transverse filament proteins: essential for crossing over. Transgenic Res 14:547–550

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth NM, Goetsch L, Byers B (1990) The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61:73–84

    Article  PubMed  CAS  Google Scholar 

  • Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70

    Article  PubMed  CAS  Google Scholar 

  • Hunter N, Chambers SR, Louis EJ, Borts RH (1996) The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 15:1726–1733

    PubMed  CAS  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    PubMed  CAS  Google Scholar 

  • King JS, Mortimer RK (1990) A polymerization model of chiasma interference and corresponding computer simulation. Genetics 126:1127–1138

    PubMed  CAS  Google Scholar 

  • Kleckner N (1996) Meiosis: how could it work? Proc Natl Acad Sci U S A 93:8167–8174

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Padmore R, Bishop DK (1991) Meiotic chromosome metabolism: one view. Cold Spring Harb Symp Quant Biol 56:729–743

    PubMed  CAS  Google Scholar 

  • Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Zickler D, Jones, GH, Henle J, Dekker J, Hutchinson J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci U S A 101:12592–12597

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Stahl FW (1993) Chiasma interference and the distribution of exchanges in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 58:543–552

    PubMed  CAS  Google Scholar 

  • Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED, Schwartzberg P, Collins FS, Cohen PE (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31:385–390

    PubMed  CAS  Google Scholar 

  • MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP (1966) The relationship of crossing over to chromosome synapsis in a short paracentric inversion. Genetics 53:1071–1077

    PubMed  CAS  Google Scholar 

  • Maguire MP (1972) The temporal sequence of synaptic initiation, crossing over and synaptic completion. Genetics 70:353–370

    PubMed  CAS  Google Scholar 

  • Maguire MP (1988) Crossover site determination and interference. J Theor Biol 134:565–750

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP (1995) Is the synaptonemal complex a disjunction machine? J Hered 86:330–340

    PubMed  CAS  Google Scholar 

  • Manheim EA, McKim KS (2003) The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol 13:276–285

    Article  PubMed  CAS  Google Scholar 

  • McKim KS, Jang JK, Manheim EA (2002) Meiotic recombination and chromosome segregation in Drosophila females. Annu Rev Genet 36:205–232

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Earnshaw WC (1989) Anti-topoisomerase II recognizes meiotic chromosome cores. Chromosoma 98:317–322

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE (1988) Chromatin organization at meiosis. BioEssays 9:151–153 Mol Cell Biol 21:5667–5677

    Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    PubMed  CAS  Google Scholar 

  • Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 116:1719–1731

    Article  PubMed  CAS  Google Scholar 

  • Moses MJ (1969) Structure and function of the synaptonemal complex. Genetics 61(Suppl):41–51

    PubMed  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Ortiz R, Echeverria OM, Ubaldo E, Carlos A, Scassellati C, Vazquez-Nin GH (2002) Cytochemical study of the distribution of RNA and DNA in the synaptonemal complex of guinea pig and rat spermatocytes. Eur J Histochem 46:133–142

    PubMed  CAS  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15(12):674–681

    Article  PubMed  CAS  Google Scholar 

  • Pelttari J, Hoja MR, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero JL, Heyting C, Hoog C (2001) A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21:5667–5677

    Article  PubMed  CAS  Google Scholar 

  • Plug AW, Peters AH, Xu Y, Keegan KS, Hoekstra MF, Baltimore D, de Boer P, Ashley T (1997) ATM and RPA in meiotic chromosome synapsis and recombination. Nat Genet 17:457–461

    Article  PubMed  CAS  Google Scholar 

  • Pukkila PJ, Shannon KB, Skrzynia C (1995) Independent synaptic behavior of sister chromatids in Coprinus cinereus. Can J Bot 73(Suppl 1):S215–S220

    Article  Google Scholar 

  • Rasmussen SW (1986) Initiation of synapsis and interlocking of chromosomes during zygotene in Bombyx spermatocytes. Carlsberg Res Commun 51:401–432

    Article  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Saitoh Y, Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76:609–622

    Article  PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    Article  PubMed  CAS  Google Scholar 

  • Sherman JD, Herickhoff LA, Stack SM (1992) Silver staining two types of meiotic nodules. Genome 35:907–915

    PubMed  CAS  Google Scholar 

  • Stack SM, Anderson LK (1986) Two dimensional spreads of synaptonemal complexes from solanaceous plants. III. Recombination nodules and crossing over in Lycopersicon esculentum (tomato). Chromosoma 94:253–258

    Article  Google Scholar 

  • Stern H, Westergaard M, Von Wettstein D (1975) Presynaptic events in meiocytes of Lilium longiflorum and their relation to crossing-over: a preselection hypothesis. Proc Natl Acad Sci U S A 72:961–965

    Article  PubMed  CAS  Google Scholar 

  • Storlazzi A, Xu L, Cao L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc Natl Acad Sci U S A 92:8512–8516

    Article  PubMed  CAS  Google Scholar 

  • Storlazzi A, Tesse S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    Article  PubMed  CAS  Google Scholar 

  • Strick R, Laemmli UK (1995) SARs are cis DNA elements of chromosome dynamics: synthesis of a SAR repressor protein. Cell 83:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292

    Article  PubMed  CAS  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147:207–220

    Article  PubMed  CAS  Google Scholar 

  • Tease C, Hulten MA (2004) Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res 107:208–215

    Article  PubMed  CAS  Google Scholar 

  • Tessé S, Storlazzi A, Kleckner N, Gargano S, Zickler D (2003) Localization and roles of Ski8p in Sordaria macrospora meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci U S A 100:12865–12870

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    Article  PubMed  Google Scholar 

  • van Heemst D, Heyting C (2000) Sister chromatid cohesion and recombination in meiosis. Chromosoma 109:10–26

    Article  PubMed  Google Scholar 

  • van Heemst D, James F, Poggeler S, Berteaux-Lecellier V, Zickler D (1999) Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98:261–271

    Article  PubMed  Google Scholar 

  • Viera A, Santos JL, Page J, Parra MT, Calvente A, Cifuentes M, Gomez R, Lira R, Suja JA, Rufas JS (2004) DNA double-strand breaks, recombination and synapsis: the timing of meiosis differs in grasshoppers and flies. EMBO Rep 5:385–391

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    Article  Google Scholar 

  • Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–961

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Tsutsumi C, Kojima H, Oiwa K, Hiraoka Y (2001) Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. Mol Biol Cell 12:3933–3946

    PubMed  CAS  Google Scholar 

  • Zickler D (1977) Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61:289–316

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Sage J (1981) Synaptonemal complexes with modified lateral elements in Sordaria humana: development of and relationship to the “recombination nodules.” Chromosoma 84:305–318

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (USA) grants GM25326 and GM44794. The author is grateful for ideas and comments from Denise Zickler, Gareth H. Jones and members of the Kleckner lab, and for manuscript help from Jim Henle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Kleckner.

Additional information

Communicated by R. Benavente

The synaptonemal complex—50 years

Appendix

Appendix

Table 1 Calculation of loop densities along pachytene SCs, Denise Zickler, Ruth Padmore and Nancy Kleckner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleckner, N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194 (2006). https://doi.org/10.1007/s00412-006-0055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0055-7

Keywords

Navigation