Skip to main content
Log in

Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    Article  PubMed  CAS  Google Scholar 

  • Alpi A, Pasierbek P, Gartner A, Loidl J (2003) Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma 112:6–16

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Royer SM, Page SL, McKim KS, Lai A, Lilly MA, Hawley RS (2005) Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 102:4482–4487

    Article  PubMed  CAS  Google Scholar 

  • Arora C, Kee K, Maleki S, Keeney S (2004) Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13:549–559

    Article  PubMed  CAS  Google Scholar 

  • Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res Rev Mutat Res 566:231–248

    CAS  Google Scholar 

  • Bähler J, Wyler T, Loidl J, Kohli J (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J Cell Biol 121:241–256

    Article  PubMed  Google Scholar 

  • Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:1–20

    Article  PubMed  Google Scholar 

  • Bogdanov YF, Dadashev SY, Grishaeva TM (2002) Comparative genomics and proteomics of Drosophila, Brenner’s nematode, and Arabidopsis: identification of functionally similar genes and proteins of meiotic chromosome synapsis. Russ J Genet 38:908–917

    Article  CAS  Google Scholar 

  • Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    Article  PubMed  Google Scholar 

  • Cromie GA, Rubio CA, Hyppa RW, Smith GR (2005) A natural meiotic DNA break site in Schizosaccharomyces pombe is a hotspot of gene conversion, highly associated with crossing over. Genetics 169:595–605

    Article  PubMed  CAS  Google Scholar 

  • Davis L, Smith GR (2001) Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 98:8395–8402

    Article  PubMed  CAS  Google Scholar 

  • Davis L, Barbera M, McDonnell A, McIntyre K, Sternglanz R, Jin Q, Loidl J, Engebrecht J (2001) The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks. Genetics 157:1179–1189

    PubMed  CAS  Google Scholar 

  • de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514–522

    Article  PubMed  CAS  Google Scholar 

  • De Veaux LC, Smith GR (1994) Region-specific activators of meiotic recombination in Schizosaccharomyces pombe. Genes Dev 8:203–210

    Article  PubMed  Google Scholar 

  • Ellermeier C, Schmidt H, Smith GR (2004) Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 168:1891–1898

    Article  PubMed  CAS  Google Scholar 

  • Ellermeier C, Smith GR (2005) Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 102:10952–10957

    Article  PubMed  CAS  Google Scholar 

  • Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J, Nasmyth K (2005) Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr Biol 15:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Grishchuk AL, Kraehenbuehl R, Molnar M, Fleck O, Kohli J (2004) Genetic and cytological characterization of the RecA-homologous proteins Rad51 and Dmc1 of Schizosaccharomyces pombe. Curr Genet 44:317–328

    Article  PubMed  CAS  Google Scholar 

  • Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci U S A 101:4519–4524

    Article  PubMed  CAS  Google Scholar 

  • Kee K, Protacio RU, Arora C, Keeney S (2004) Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J 23:1815–1824

    Article  PubMed  CAS  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N (1996) Meiosis: how could it work? Proc Natl Acad Sci U S A 93:8167–8174

    Article  PubMed  CAS  Google Scholar 

  • Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 94:13765–13770

    Article  PubMed  CAS  Google Scholar 

  • Krawchuk MD, De Veaux LC, Wahls WP (1999) Meiotic chromosome dynamics dependent upon the rec8 +, rec10 + and rec11 + genes of the fission yeast Schizosaccharomyces pombe. Genetics 153:57–68

    PubMed  CAS  Google Scholar 

  • Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F, McFarlane RJ, Loidl J (2004) S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 117:3343–3351

    Article  PubMed  CAS  Google Scholar 

  • Malone RE, Pittman DL, Nau JJ (1997) Examination of the intron in the meiosis-specific recombination gene REC114 in Saccharomyces. Mol Gen Genet 255:410–419

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A (2004) In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J 23:939–949

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single- base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876–886

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Parisi S, Kakihara Y, Nojima H, Yamamoto A, Hiraoka Y, Bozsik A, Sipiczki M, Kohli J (2001) Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics 157:519–532

    PubMed  CAS  Google Scholar 

  • Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 116:1719–1731

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  PubMed  CAS  Google Scholar 

  • Munz P (1994) An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701–707

    PubMed  CAS  Google Scholar 

  • Murakami H, Borde V, Shibata T, Lichten M, Ohta K (2003) Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res 31:4085–4090

    Article  PubMed  CAS  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Öllinger R, Alsheimer M, Benavente R (2005) Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell 16:212–217

    Article  PubMed  CAS  Google Scholar 

  • Olson LW, Edén U, Mitani ME, Egel R (1978) Asynaptic meiosis in fission yeast? Hereditas 89:189–199

    Article  Google Scholar 

  • Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558

    Article  PubMed  CAS  Google Scholar 

  • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  Google Scholar 

  • Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JHJ, Kohli J (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515–3528

    PubMed  CAS  Google Scholar 

  • Pérez-Hidalgo L, Moreno S, San-Segundo PA (2003) Regulation of meiotic progression by the meiosis-specific checkpoint kinase Mek1 in fission yeast. J Cell Sci 116:259–271

    Article  PubMed  CAS  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–368

    Article  PubMed  CAS  Google Scholar 

  • Prieler S, Penkner A, Borde V, Klein F (2005) The control of Spo11’s interaction with meiotic recombination hotspots. Genes Dev 19:255–269

    Article  PubMed  CAS  Google Scholar 

  • Pryce DW, Lorenz A, Smirnova JB, Loidl J, McFarlane RJ (2005) Differential activation of M26-containing meiotic recombination hot spots in Schizosaccharomyces pombe. Genetics 170:95–106

    Article  PubMed  CAS  Google Scholar 

  • Reddy KC, Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118:439–452

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621

    Article  PubMed  CAS  Google Scholar 

  • Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson J-Y (2005) Fission yeast Rad51 and Dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 25:4377–4387

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Bähler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127:273–285

    Article  PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in Saccharomyces cerevisiae is a RecA-like protein. Cell 69:457–470

    Article  PubMed  CAS  Google Scholar 

  • Thompson DA, Stahl FW (1999) Genetic control of recombination partner preference in yeast meiosis: isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153:621–641

    PubMed  CAS  Google Scholar 

  • Wan L, de los Santos T, Zhang C, Shokat K, Hollingsworth NM (2004) Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic DSB repair in budding yeast. Mol Biol Cell 15:11–23

    Article  PubMed  CAS  Google Scholar 

  • Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–517

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803

    Article  PubMed  CAS  Google Scholar 

  • Young JA, Hyppa RW, Smith GR (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167:593–605

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Rec10 antibody was kindly provided by Ramsay McFarlane (Bangor, UK). We thank Eveline Doll (Berne, Switzerland), Pedro San-Segundo (Salamanca, Spain), and Gerald R. Smith (Seattle, WA, USA) for strains. The valuable comments of Ramsay McFarlane and Gerald R. Smith on the manuscript are gratefully acknowledged. We also wish to thank Mario Spirek for help with the Western blotting experiment. This work was supported by the Austrian Science Fund (Grant P18186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Loidl.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, A., Estreicher, A., Kohli, J. et al. Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe . Chromosoma 115, 330–340 (2006). https://doi.org/10.1007/s00412-006-0053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0053-9

Keywords

Navigation