Skip to main content

Advertisement

Log in

Alzheimer’s disease: experimental models and reality

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Experimental models of Alzheimer’s disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review, we summarize the pathological features and limitations of the major experimental models of AD, including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279. doi:10.3389/fgene.2014.00279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590

    Article  CAS  PubMed  Google Scholar 

  3. Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29:6771–6779

    Article  CAS  PubMed  Google Scholar 

  4. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V et al (1999) Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer’s disease. PNAS 96:15233–15238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bales KR, Verina T, Dodel RC, Du YS, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ et al (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nature Gen 17:263–264

    Article  CAS  Google Scholar 

  6. Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL et al (2015) Translation of pre-clinical studies into successful clinical trials for Alzheimer’s disease: what are the roadblocks and how can they be overcome? J Alzheimers Dis 47:815–843. doi:10.3233/JAD-150136

    Article  PubMed  Google Scholar 

  7. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100

    Article  CAS  PubMed  Google Scholar 

  8. Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H (2015) Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 36:297–309

    Article  CAS  PubMed  Google Scholar 

  9. Blessed G, Tomlinson BE (1968) The association between quantitative measures of dementia and senile change in the gray matter of elderly subjects. Br J Psychiatry 114:797–811

    Article  CAS  PubMed  Google Scholar 

  10. Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M (2007) Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β deposition in APP x Tau transgenic mice. Am J Pathol 171:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bons N, Mestre N, Ritchie K, Petter A, Podlisny M, Selkoe D (1994) Identification of amyloid β protein in the brain of the small, short-lived lemurian primate Microcebus murinus. Neurobiol Aging 15:215–220

    Article  CAS  PubMed  Google Scholar 

  12. Bons N, Rieger F, Prudhomme D, Fisher A, Krause KH (2006) Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav 5:120–130. doi:10.1111/j.1601-183X.2005.00149.x

    Article  CAS  PubMed  Google Scholar 

  13. Bouleau S, Tricoire H (2015) Drosophila models of Alzheimer’s disease: advances, limits, and perspectives. J Alzheimers Dis 45:1015–1038. doi:10.3233/JAD-142802

    CAS  PubMed  Google Scholar 

  14. Boutajangout A, Wisniewski T (2014) Tau-based therapeutic approaches for Alzheimer’s disease—a mini-review. Gerontology 60:381–385. doi:10.1159/000358875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  16. Braidy N, Poljak A, Jayasena T, Mansour H, Inestrosa NC, Sachdev PS (2015) Accelerating Alzheimer’s research through ‘natural’ animal models. Curr Opin Psychiatry 28:155–164. doi:10.1097/YCO.0000000000000137

    PubMed  Google Scholar 

  17. Cacace R, Sleegers K, Van Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12:733–748. doi:10.1016/j.jalz.2016.01.012

    Article  PubMed  Google Scholar 

  18. Cairns NJ, Perrin RJ, Franklin EE, Carter D, Vincent B, Xie M, Bateman RJ, Benzinger T, Friedrichsen K, Brooks WS et al (2015) Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology 35:390–400. doi:10.1111/neup.12205

    Article  PubMed  PubMed Central  Google Scholar 

  19. Camus S, Ko WK, Pioli E, Bezard E (2015) Why bother using non-human primate models of cognitive disorders in translational research? Neurobiol Learn Mem 124:123–129. doi:10.1016/j.nlm.2015.06.012

    Article  PubMed  Google Scholar 

  20. Cash DM, Ridgway GR, Liang Y, Ryan NS, Kinnunen KM, Yeatman T, Malone IB, Benzinger TL, Jack CR Jr, Thompson PM et al (2013) The pattern of atrophy in familial Alzheimer disease: volumetric MRI results from the DIAN study. Neurology 81:1425–1433. doi:10.1212/WNL.0b013e3182a841c6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castellano JM, Kim J, Stewart FR, Jiang H, De Mattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:89ra57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers JK, Kuribayashi H, Ikeda S, Une Y (2010) Distribution of neprilysin and deposit patterns of Abeta subtypes in the brains of aged squirrel monkeys (Saimiri sciureus). Amyloid 17:75–82. doi:10.3109/13506129.2010.483119

    Article  CAS  PubMed  Google Scholar 

  23. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515:274–278. doi:10.1038/nature13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ et al (2013) A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci 33:6245–6256. doi:10.1523/JNEUROSCI.3672-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Alafuzoff I, Arnold SE, Atterns J, Beach TG, Cairns NJ, Dickson DW et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933

    Article  CAS  PubMed  Google Scholar 

  27. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37. doi:10.1186/alzrt269

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cuyvers E, Sleegers K (2016) Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15:857–868. doi:10.1016/S1474-4422(16)00127-7

    Article  CAS  PubMed  Google Scholar 

  29. Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE (2004) Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J Biol Chem 279:20296–20306

    Article  CAS  PubMed  Google Scholar 

  30. Davis PR, Head E (2014) Prevention approaches in a preclinical canine model of Alzheimer’s disease: benefits and challenges. Front Pharmacol 5:47. doi:10.3389/fphar.2014.00047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dhenain M, Michot JL, Privat N, Picq JL, Boller F, Duyckaerts C, Volk A (2000) MRI description of cerebral atrophy in mouse lemur primates. Neurobiol Aging 21:81–88

    Article  CAS  PubMed  Google Scholar 

  32. Do Carmo S, Cuello AC (2013) Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 8:37. doi:10.1186/1750-1326-8-37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Drummond ES, Muhling J, Martins RN, Wijaya LK, Ehlert EM, Harvey AR (2013) Pathology associated with AAV mediated expression of beta amyloid or C100 in adult mouse hippocampus and cerebellum. PLoS One 8:e59166. doi:10.1371/journal.pone.0059166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dujardin S, Colin M, Buee L (2015) Invited review: animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol 41:59–80. doi:10.1111/nan.12200

    Article  CAS  PubMed  Google Scholar 

  35. Duyckaerts C (2011) Tau pathology in children and young adults: can you still be unconditionally baptist? Acta Neuropathol 121:145–147

    Article  PubMed  Google Scholar 

  36. Elfenbein HA, Rosen RF, Stephens SL, Switzer RC, Smith Y, Pare J, Mehta PD, Warzok R, Walker LC (2007) Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    CAS  PubMed  Google Scholar 

  37. Esh C, Patton L, Kalback W, Kokjohn TA, Lopez J, Brune D, Newell AJ, Beach T, Schenk D, Games D et al (2005) Altered APP processing in PDAPP (Val717 –>Phe) transgenic mice yields extended-length Aβ peptides. Biochemistry 44:13807–13819. doi:10.1021/bi051213+

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Funez P, de Mena L, Rincon-Limas DE (2015) Modeling the complex pathology of Alzheimer’s disease in Drosophila. Exp Neurol 274:58–71. doi:10.1016/j.expneurol.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frost JL, Le KX, Cynis H, Ekpo E, Kleinschmidt M, Palmour RM, Ervin FR, Snigdha S, Cotman CW, Saido TC et al (2013) Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol 183:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM (2005) Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25:2803–2810

    Article  CAS  PubMed  Google Scholar 

  41. Fryer JD, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M, Holtzman DM (2003) Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein Transgenic mice. J Neurosci 23:7889–7896

    CAS  PubMed  Google Scholar 

  42. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  43. Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:9382–9386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gearing M, Tigges J, Mori H, Mirra SS (1997) β-Amyloid (Aβ) deposition in the brains of aged orangutans. Neurobiol Aging 18:139–146

    Article  CAS  PubMed  Google Scholar 

  45. Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci USA 106:18367–18372. doi:10.1073/pnas.0907652106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giannakopoulos P, Kovari E, Gold G, von Gunten A, Hof PR, Bouras C (2009) Pathological substrates of cognitive decline in Alzheimer’s disease. Front Neurol Neurosci 24:20–29. doi:10.1159/000197881

    Article  PubMed  Google Scholar 

  47. Giannakopoulos P, Silhol S, Jallageas V, Mallet J, Bons N, Bouras C, Delaère P (1997) Quantitative analysis of tau protein-immunoreactive accumulations and β amyloid protein deposits in the cerebral cortex of the mouse lemur, Microcebus murinus. Acta Neuropathol 94:131–139

    Article  CAS  PubMed  Google Scholar 

  48. Gold G, Bouras C, Kovari E, Canuto A, Glaria BG, Malky A, Hof PR, Michel JP, Giannakopoulos P (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol 99:579–582 (discussion 583–574)

    Article  CAS  PubMed  Google Scholar 

  49. Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544

    Article  PubMed  CAS  Google Scholar 

  50. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119:523–541. doi:10.1007/s00401-010-0679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grueninger F, Bohrmann B, Czech C, Ballard TM, Frey JR, Weidensteiner C, von Kienlin M, Ozmen L (2010) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice. Neurobiol Dis 37:294–306. doi:10.1016/j.nbd.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  52. Guerreiro R, Hardy J (2014) Genetics of Alzheimer’s disease. Neurotherapeutics 11:432–437

    Article  Google Scholar 

  53. Hannan SB, Drager NM, Rasse TM, Voigt A, Jahn TR (2016) Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. J Neurochem 137:12–25. doi:10.1111/jnc.13532

    Article  CAS  PubMed  Google Scholar 

  54. Hartig W, Bruckner G, Schmidt C, Brauer K, Bodewitz G, Turner JD, Bigl V (1997) Co-localization of beta-amyloid peptides, apolipoprotein E and glial markers in senile plaques in the prefrontal cortex of old rhesus monkeys. Brain Res 751:315–322

    Article  CAS  PubMed  Google Scholar 

  55. Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, Granholm AC, Iqbal K, Krams M, Lemere CA et al (2015) Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimer’s Dement 11:700–709

    Article  Google Scholar 

  56. Heilbroner PL, Kemper TL (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys. Acta Neuropathol 81:60–65

    Article  CAS  PubMed  Google Scholar 

  57. Heuer E, Rosen RF, Cintron A, Walker LC (2012) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des 18:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Saad WK, Mueller R, Morgan D, Sanders S et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    Article  CAS  PubMed  Google Scholar 

  59. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. PNAS 97:2892–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales KR, Hsiao Ashe K, Irizarry MC, Hyman BT (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47:739–747

    Article  CAS  PubMed  Google Scholar 

  62. Hsiao KK, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102

    Article  CAS  PubMed  Google Scholar 

  63. Huang Y, Mahley RW (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis 72(Pt A):3–12. doi:10.1016/j.nbd.2014.08.025

    Article  CAS  PubMed  Google Scholar 

  64. Hunter JM, Bowers WJ, Maarouf CL, Mastrangelo MA, Daugs ID, Kokjohn TA, Kalback WM, Luehrs DC, Valla J, Beach TG et al (2011) Biochemical and morphological characterization of the AβPP/PS/tau triple transgenic mouse model and its relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 27:361–376

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  66. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220. doi:10.1038/nature10821

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836

    Article  CAS  PubMed  Google Scholar 

  69. Jones RW (2010) Dimebon disappointment. Alzheimers Res Ther 2:25. doi:10.1186/alzrt49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Joseph-Mathurin N, Dorieux O, Trouche SG, Boutajangout A, Kraska A, Fontes P, Verdier JM, Sigurdsson EM, Mestre-Frances N, Dhenain M (2013) Amyloid β immunization worsens iron deposits in the choroid plexus and cerebral microbleeds. Neurobiol Aging 34:2613–2622. doi:10.1016/j.neurobiolaging.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M et al (2002) APP transgenic mice Tg2576 accumulate Aβ peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry 41:922–928

    Article  CAS  PubMed  Google Scholar 

  72. Kalinin S, Willard SL, Shively CA, Kaplan JR, Register TC, Jorgensen MJ, Polak PE, Rubinstein I, Feinstein DL (2013) Development of amyloid burden in African Green monkeys. Neurobiol Aging 34:2361–2369. doi:10.1016/j.neurobiolaging.2013.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kamp JA, Moursel LG, Haan J, Terwindt GM, Lesnik Oberstein SA, van Duinen SG, van Roon-Mom WM (2014) Amyloid β in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Rev Neurosci 25:641–651. doi:10.1515/revneuro-2014-0008

    Article  CAS  PubMed  Google Scholar 

  74. Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83:11–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51. doi:10.1016/j.biopsych.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  76. Kim DH, Yeo SH, Park JM, Choi JY, Lee TH, Park SY, Ock MS, Eo J, Kim HS, Cha HJ (2014) Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Gene 545:185–193

    Article  CAS  PubMed  Google Scholar 

  77. Kim YH, Choi SH, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, Washicosky KJ, Klee JB, Brustle O, Tanzi RE et al (2015) A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc 10:985–1006. doi:10.1038/nprot.2015.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kimura N, Nakamura S, Goto N, Narushima E, Hara I, Shichiri S, Saitou K, Nose M, Hayashi T, Kawamura S et al (2001) Senile plaques in an aged western lowland gorilla. Exp Anim 50:77–81

    Article  CAS  PubMed  Google Scholar 

  79. Knight EM, Kim SH, Kottwitz JC, Hatami A, Albay R, Suzuki A, Lublin A, Alberini CM, Klein WL, Szabo P et al (2016) Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes. Neurol Neuroimmunol Neuroinflamm 3:e237. doi:10.1212/NXI.0000000000000237

    Article  PubMed  PubMed Central  Google Scholar 

  80. Knopman DS (2015) Is dominantly inherited Alzheimer disease a clone of sporadic Alzheimer disease? Neurology 85:750–751. doi:10.1212/WNL.0000000000001897

    Article  PubMed  Google Scholar 

  81. Knopman DS, Jack CR Jr, Lundt ES, Weigand SD, Vemuri P, Lowe VJ, Kantarci K, Gunter JL, Senjem ML, Mielke MM et al (2016) Evolution of neurodegeneration-imaging biomarkers from clinically normal to dementia in the Alzheimer disease spectrum. Neurobiol Aging 46:32–42. doi:10.1016/j.neurobiolaging.2016.06.003

    Article  PubMed  Google Scholar 

  82. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12:487–496. doi:10.1016/j.stem.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  83. Kraska A, Dorieux O, Picq JL, Petit F, Bourrin E, Chenu E, Volk A, Perret M, Hantraye P, Mestre-Frances N et al (2011) Age-associated cerebral atrophy in mouse lemur primates. Neurobiol Aging 32:894–906. doi:10.1016/j.neurobiolaging.2009.05.018

    Article  PubMed  Google Scholar 

  84. Kumar S, Rezaei-Ghaleh N, Terwel D, Thal DR, Richard M, Hoch M, Mc Donald JM, Wullner U, Glebov K, Heneka MT et al (2011) Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 30:2255–2265. doi:10.1038/emboj.2011.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M et al (2001) Comparitive analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. JBC 276:12991–12998

    Article  CAS  Google Scholar 

  86. Kuszczyk MA, Sanchez S, Pankiewicz J, Kim J, Duszczyk M, Guridi M, Asuni AA, Sullivan PM, Holtzman DM, Sadowski MJ (2013) Blocking the interaction between apolipoprotein E and Aβ reduces intraneuronal accumulation of Aβ and inhibits synaptic degeneration. Am J Pathol 182:1750–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lawlor PA, Bland RJ, Das P, Price RW, Holloway V, Smithson L, Dicker BL, During MJ, Young D, Golde TE (2007) Novel rat Alzheimer’s disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels. Mol Neurodegener 2:11. doi:10.1186/1750-1326-2-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D et al (2004) Alzheimer’s disease aβ vaccine reduces central nervous system aβ levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lemere CA, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Li D, Zheng JB, Seabrook TJ, Selkoe D, Ervin FR et al (2003) Aβ immunization in aged vervet monkeys reduces Aβ levels in brain and CSF. Soc Neurosci Abst 133(5):5

    Google Scholar 

  90. Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, Atifeh R, Ducatenzeiler A, Klein W et al (2010) A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimer’s Dis 20:113–126. doi:10.3233/JAD-2010-1349

    CAS  Google Scholar 

  91. Lewis J, Dickson D, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  92. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Murphy MP, Baker M, Yu X et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    Article  CAS  PubMed  Google Scholar 

  93. Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, Pautler RG, Taffet GE, Zheng H (2014) Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 9:28. doi:10.1186/1750-1326-9-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Liao F, Zhang TJ, Jiang H, Lefton KB, Robinson GO, Vassar R, Sullivan PM, Holtzman DM (2015) Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol Commun 3:70. doi:10.1186/s40478-015-0250-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liu L, Orozco IJ, Planel E, Wen Y, Bretteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu WH et al (2008) A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis 31:46–57. doi:10.1016/j.nbd.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  96. Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145:1358–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McKee AC, Kosik KS, Kowall NW (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 30:156–165. doi:10.1002/ana.410300206

    Article  CAS  PubMed  Google Scholar 

  98. Mestre-Frances N, Keller E, Calenda A, Barelli H, Checler F, Bons N (2000) Immunohistochemical analysis of cerebral cortical and vascular lesions in the primate Microcebus murinus reveal distinct amyloid β1–42 and β1–40 immunoreactivity profiles. Neurobiol Dis 7:1–8. doi:10.1006/nbdi.1999.0270

    Article  CAS  PubMed  Google Scholar 

  99. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed  Google Scholar 

  100. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of aβ 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    CAS  PubMed  Google Scholar 

  101. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN, Walsh DM, Selkoe DJ, Young-Pearse TL (2014) The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 23:3523–3536. doi:10.1093/hmg/ddu064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns N, Davies P, Tredici KD, Duyckaerts C, Frosch MP et al (2012) Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: a review of the literature. JNEN 71:362–381

    Google Scholar 

  103. Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14. doi:10.1097/NEN.0b013e3181919a48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Newman M, Ebrahimie E, Lardelli M (2014) Using the zebrafish model for Alzheimer’s disease research. Front Genet 5:189. doi:10.3389/fgene.2014.00189

    PubMed  PubMed Central  Google Scholar 

  105. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989. doi:10.1038/nature07767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nisbet RM, Polanco JC, Ittner LM, Gotz J (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129:207–220. doi:10.1007/s00401-014-1371-2

    Article  CAS  PubMed  Google Scholar 

  107. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van EL et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  CAS  PubMed  Google Scholar 

  108. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    Article  CAS  PubMed  Google Scholar 

  109. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421

    Article  CAS  PubMed  Google Scholar 

  110. Pankiewicz JE, Guridi M, Kim J, Asuni AA, Sanchez S, Sullivan PM, Holtzman DM, Sadowski MJ (2014) Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice. Acta Neuropathol Commun 2:75. doi:10.1186/s40478-014-0075-0

    PubMed  PubMed Central  Google Scholar 

  111. Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, Falting J, Distel M, Koster RW, Schmid B et al (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119:1382–1395. doi:10.1172/JCI37537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ (2013) Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 521:4318–4338. doi:10.1002/cne.23428

    Article  CAS  PubMed  Google Scholar 

  113. Perez SE, Sherwood CC, Cranfield MR, Erwin JM, Mudakikwa A, Hof PR, Mufson EJ (2016) Early Alzheimer’s disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging 39:195–201. doi:10.1016/j.neurobiolaging.2015.12.017

    Article  PubMed  Google Scholar 

  114. Picq JL, Aujard F, Volk A, Dhenain M (2012) Age-related cerebral atrophy in nonhuman primates predicts cognitive impairments. Neurobiol Aging 33:1096–1109. doi:10.1016/j.neurobiolaging.2010.09.009

    Article  PubMed  Google Scholar 

  115. Potter H, Wisniewski T (2012) Apolipoprotein E: essential catalyst of the Alzheimer amyloid cascade. Int J Alzheimer’s Dis 2012:489428

    Google Scholar 

  116. Prins ND, Visser PJ, Scheltens P (2010) Can novel therapeutics halt the amyloid cascade? Alzheimers Res Ther 2:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Puzzo D, Gulisano W, Palmeri A, Arancio O (2015) Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discov 10:703–711. doi:10.1517/17460441.2015.1041913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S et al (2006) Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raja WK, Mungenast AE, Lin YT, Ko T, Abdurrob F, Seo J, Tsai LH (2016) Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One 11:e0161969. doi:10.1371/journal.pone.0161969

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rebeck GW, Hoe HS, Moussa CE (2010) β-Amyloid1-42 Gene Transfer Model Exhibits Intraneuronal Amyloid, Gliosis, Tau Phosphorylation, and Neuronal Loss. J Biol Chem 285:7440–7446. doi:10.1074/jbc.M109.083915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ribe EM, Perez M, Puig B, Gich I, Lim F, Cuadrado M, Sesma T, Catena S, Sanchez B, Nieto M et al (2005) Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis 20:814–822. doi:10.1016/j.nbd.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  122. Rijal UA, Kosterin I, Kumar S, Von Arnim CA, Yamaguchi H, Fandrich M, Walter J, Thal DR (2014) Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137:887–903

    Article  Google Scholar 

  123. Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE, Lee VM, Kawas CH, Trojanowski JQ (2011) Neocortical and hippocampal amyloid-beta and tau measures associate with dementia in the oldest-old. Brain 134:3708–3715. doi:10.1093/brain/awr308

    Article  PubMed  Google Scholar 

  124. Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC, Davis-Turak J, Coppola G, Geschwind DH, Pare JF et al (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509:259–270. doi:10.1002/cne.21744

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Neubert TA, Ghiso JA, LeVine H 3rd, Walker LC (2016) Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer’s disease. Neurobiol Aging 44:185–196. doi:10.1016/j.neurobiolaging.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  126. Rosen RF, Walker LC, Levine H 3rd (2011) PIB binding in aged primate brain: enrichment of high-affinity sites in humans with Alzheimer’s disease. Neurobiol Aging 32:223–234. doi:10.1016/j.neurobiolaging.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  127. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, Goate A, Frommelt P, Ghetti B, Langbaum JB et al (2014) Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83:253–260. doi:10.1212/WNL.0000000000000596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sadowski M, Pankiewicz J, Scholtzova H, Mehta P, Prelli F, Quartermain D, Wisniewski T (2006) Blocking the apolipoproteinE/Amyloid β interaction reduces the parenchymal and vascular amyloid-β deposition and prevents memory deficit in AD transgenic mice. PNAS 103:18787–18792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663. doi:10.1038/nn.3697

    Article  CAS  PubMed  Google Scholar 

  130. Saito T, Matsuba Y, Yamazaki N, Hashimoto S, Saido TC (2016) Calpain activation in Alzheimer’s model mice is an artifact of APP and presenilin over-expression. J Neurosci 36:9933–9936. doi:10.1523/JNEUROSCI.1907-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Salazar C, Valdivia G, Ardiles AO, Ewer J, Palacios AG (2016) Genetic variants associated with neurodegenerative Alzheimer disease in natural models. Biol Res 49:14. doi:10.1186/s40659-016-0072-9

    Article  PubMed  PubMed Central  Google Scholar 

  132. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, Sabbagh M, Honig LS, Doody R, Van Dyck CH et al (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sani S, Traul D, Klink A, Niaraki N, Gonzalo-Ruiz A, Wu CK, Geula C (2003) Distribution, progression and chemical composition of cortical amyloid-beta deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol 105:145–156. doi:10.1007/s00401-002-0626-5

    CAS  PubMed  Google Scholar 

  135. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517. doi:10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  137. Schmidt F, Boltze J, Jager C, Hofmann S, Willems N, Seeger J, Hartig W, Stolzing A (2015) Detection and quantification of β-amyloid, pyroglutamyl Aβ, and tau in aged canines. J Neuropathol Exp Neurol 74:912–923. doi:10.1097/NEN.0000000000000230

    Article  CAS  PubMed  Google Scholar 

  138. Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E et al (2001) Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 276:11539–11544. doi:10.1074/jbc.M010977200

    Article  CAS  PubMed  Google Scholar 

  139. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P, Pani L, Winblad B et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275:251–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Scholtzova H, Nehete P, Nehete BP, Mallory M, Cho EH, Holmes A, Park J, Wren MS, Pardington P, Gupta G et al (2015) Toll-like receptor 9 stimulation via CpG ODN in a non-human primate model of sporadic cerebral amyloid angiopathy. Alz Dementia 11:P618

    Article  Google Scholar 

  141. Scholtzova H, Williams L, Nehete P, Sabado R, Holmes A, Wisniewski T (2013) Innate immunity stimulation via TLR9 in a non-human primate model of sporadic cerebral amyloid angiopathy. Alz Dementia 9:p508

    Article  Google Scholar 

  142. Schultz C, Hubbard GB, Rub U, Braak E, Braak H (2000) Age-related progression of tau pathology in brains of baboons. Neurobiol Aging 21:905–912

    Article  CAS  PubMed  Google Scholar 

  143. Schutt T, Helboe L, Pedersen LO, Waldemar G, Berendt M, Pedersen JT (2016) Dogs with cognitive dysfunction as a spontaneous model for early Alzheimer’s disease: a translational study of neuropathological and inflammatory markers. J Alzheimers Dis 52:433–449. doi:10.3233/JAD-151085

    Article  PubMed  CAS  Google Scholar 

  144. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. doi:10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. doi:10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  146. Shah P, Lal N, Leung E, Traul DE, Gonzalo-Ruiz A, Geula C (2010) Neuronal and axonal loss are selectively linked to fibrillar amyloid-β within plaques of the aged primate cerebral cortex. Am J Pathol 177:325–333. doi:10.2353/ajpath.2010.090937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shinohara M, Fujioka S, Murray ME, Wojtas A, Baker M, Rovelet-Lecrux A, Rademakers R, Das P, Parisi JE, Graff-Radford NR et al (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer’s disease. Brain 137:1533–1549. doi:10.1093/brain/awu046

    Article  PubMed  PubMed Central  Google Scholar 

  148. Smolek T, Madari A, Farbakova J, Kandrac O, Jadhav S, Cente M, Brezovakova V, Novak M, Zilka N (2016) Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol 524:874–895. doi:10.1002/cne.23877

    Article  CAS  PubMed  Google Scholar 

  149. Steffen J, Krohn M, Paarmann K, Schwitlick C, Bruning T, Marreiros R, Muller-Schiffmann A, Korth C, Braun K, Pahnke J (2016) Revisiting rodent models: octodon degus as Alzheimer’s disease model? Acta Neuropathol Commun 4:91. doi:10.1186/s40478-016-0363-y

    Article  PubMed  PubMed Central  Google Scholar 

  150. Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275

    Article  CAS  PubMed  Google Scholar 

  151. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sturchler-Pierrat C, Staufenbiel M (2000) Pathogenic mechanisms of Alzheimer’s disease analyzed in the APP23 transgenic mouse model. Ann N Y Acad Sci 920:134–139

    Article  CAS  PubMed  Google Scholar 

  153. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089. doi:10.1038/nprot.2007.418

    Article  CAS  PubMed  Google Scholar 

  154. Takeuchi A, Irizarry MC, Duff K, Saido T, Hsiao Ashe K, Hasegawa H, Mann DM, Hyman BT, Iwatsubo T (2000) Age-related amyloid & #x03B2; deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amylo β precursor protein swedish mutant is not associated with global neuronal loss. AJP 157:331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St. George Hyslop P, VanKeuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid & #x03B2;-protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer’s locus. Science 235:880–884

    Article  CAS  PubMed  Google Scholar 

  156. Tellechea P, Pujol N, Esteve-Belloch P, Echeveste B, Garcia-Eulate MR, Arbizu J, Riverol M (2015) Early- and late-onset Alzheimer disease: are they the same entity? Neurologia. doi:10.1016/j.nrl.2015.08.002

    PubMed  Google Scholar 

  157. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  158. Thal DR, Walter J, Saido TC, Fandrich M (2015) Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol 129:167–182. doi:10.1007/s00401-014-1375-y

    Article  CAS  PubMed  Google Scholar 

  159. Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T et al (2010) A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    Article  CAS  PubMed  Google Scholar 

  160. Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242

    Article  CAS  PubMed  Google Scholar 

  161. Trouche SG, Asuni A, Rouland S, Wisniewski T, Frangione B, Verdier JM, Sigurdsson EM, Mestre-Frances N (2009) Antibody response and plasma Aβ1–40 in young Microcebus murinus primates immunized with Aβ1–42 and its derivatives. Vaccine 27:957–964

    Article  CAS  PubMed  Google Scholar 

  162. Ulrich JD, Holtzman DM (2016) TREM2 Function in Alzheimer’s disease and neurodegeneration. ACS Chem Neurosci 7:420–427. doi:10.1021/acschemneuro.5b00313

    Article  CAS  PubMed  Google Scholar 

  163. Umeda T, Maekawa S, Kimura T, Takashima A, Tomiyama T, Mori H (2014) Neurofibrillary tangle formation by introducing wild-type human tau into APP transgenic mice. Acta Neuropathol 127:685–698. doi:10.1007/s00401-014-1259-1

    Article  CAS  PubMed  Google Scholar 

  164. Uno H, Alsum PB, Dong S, Richardson R, Zimbric ML, Thieme CS, Houser WD (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 17:275–281

    Article  CAS  PubMed  Google Scholar 

  165. Uno H, Walker LC (1993) The age of biosenescence and the incidence of cerebral beta-amyloidosis in aged captive rhesus monkeys. Ann N Y Acad Sci 695:232–235

    Article  CAS  PubMed  Google Scholar 

  166. Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Walker LC, Kitt CA, Schwam E, Buckwald B, Garcia F, Sepinwall J, Price DL (1987) Senile plaques in aged squirrel monkeys. Neurobiol Aging 8:291–296

    Article  CAS  PubMed  Google Scholar 

  168. Walker LC, Masters C, Beyreuther K, Price DL (1990) Amyloid in the brains of aged squirrel monkeys. Acta Neuropathol 80:381–387

    Article  CAS  PubMed  Google Scholar 

  169. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. doi:10.3389/fgene.2014.00088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Wingo TS, Lah JJ, Levey AI, Cutler DJ (2012) Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol 69:59–64

    Article  PubMed  Google Scholar 

  171. Wisniewski T, Drummond E (2016) Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 15:401–415. doi:10.1586/14760584.2016.1121815

    CAS  PubMed  Google Scholar 

  172. Wisniewski T, Goni F (2015) Immunotherapeutic Approaches for Alzheimer’s Disease. Neuron 85:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wisniewski T, Sigurdsson EM (2010) Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim Biophys Acta Mol Basis Dis 1802:847–859

    Article  CAS  Google Scholar 

  174. Xu G, Ran Y, Fromholt SE, Fu C, Yachnis AT, Golde TE, Borchelt DR (2015) Murine Aβ over-production produces diffuse and compact Alzheimer-type amyloid deposits. Acta Neuropathol Commun 3:72. doi:10.1186/s40478-015-0252-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539. doi:10.1093/hmg/ddr394

    Article  CAS  PubMed  Google Scholar 

  176. Yamazaki Y, Painter MM, Bu G, Kanekiyo T (2016) Apolipoprotein E as a therapeutic target in Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 30:773–789. doi:10.1007/s40263-016-0361-4

    Article  CAS  PubMed  Google Scholar 

  177. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  PubMed  Google Scholar 

  178. Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA, Estus S, Rebeck GW et al (2012) APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287:41774–41786. doi:10.1074/jbc.M112.407957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang-Nunes SX, Maat-Schieman ML, Van Duinen SG, Roos RA, Frosch MP, Greenberg SM (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by NIH Grants: NS073502 and AG08051. We thank Geoffrey Pires for his assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wisniewski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drummond, E., Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133, 155–175 (2017). https://doi.org/10.1007/s00401-016-1662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1662-x

Keywords

Navigation