Skip to main content

Advertisement

Log in

Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Aβ42 and Alzheimer’s disease neuropathology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In Alzheimer’s disease (AD), Purkinje neurons in the cerebellum are spared, while, for instance, pyramidal neurons in the hippocampus are neuropathologically affected. Several lines of evidence suggest that the pathogenesis could be induced by the concentration-dependent polymerization of the amyloid β-peptide (Aβ) into extracellular oligomers. The role of intracellular Aβ is not fully investigated, but recent data indicate that also this pool could be of importance. Here, we use laser capture microdissection microscopy for isolation of Purkinje neurons from AD cases and controls, and quantify the low levels of intracellular Aβ using a novel and highly sensitive ELISA. Similar to Cornu Ammonis 1 pyramidal neurons, the intracellular levels of the most toxic variant, Aβ42, as well as the Aβ42/Aβ40 ratio, were increased in Purkinje neurons from sporadic AD cases as compared to controls. However, the levels of Aβ42 as well as Aβ40 were clearly lower in Purkinje neurons than in pyramidal neurons. Based on the volume of the captured Purkinje neurons, the intraneuronal concentrations of Aβ42 were calculated to be 200 nM in sporadic AD cases and 90 nM in controls. The corresponding concentrations in pyramidal neurons from hippocampus were 3 μM and 660 nM, respectively. The Aβ40 concentration was not significantly altered in AD cases compared to controls. However, we found ten times higher concentration of Aβ40 in pyramidal neurons (10 μM) compared to Purkinje neurons (1 μM). Finally, we suggest that high concentration of intracellular Aβ42 correlates with vulnerability to AD neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amundson DM, Zhou M (1999) Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 38:43–52

    Article  CAS  PubMed  Google Scholar 

  2. Aoki M, Volkmann I, Tjernberg LO, Winblad B, Bogdanovic N (2008) Amyloid β-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer’s brain. Neuroreport 19:1085–1089

    Article  CAS  PubMed  Google Scholar 

  3. Batchelor RH, Zhou M (2002) A resorufin-based fluorescent assay for quantifying NADH. Anal Biochem 305:118–119

    Article  CAS  PubMed  Google Scholar 

  4. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanovic N, Morris J (1995) Diagnostic criteria for Alzheimer’s disease in multicentre brain banking. In: Cruz-Sanchez FF, Ravid R, Cuzner ML (eds) Neuropathological diagnostic criteria for brain banking. IOS Press, Amsterdam, pp. 20–29

  6. Borchelt DR, Thinakaran G, Eckman CB et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  CAS  PubMed  Google Scholar 

  7. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  8. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 26:645–654

    Article  CAS  PubMed  Google Scholar 

  9. Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal Aβ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116:647–655

    Article  CAS  PubMed  Google Scholar 

  10. D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  11. Du J, Sun B, Chen K et al (2009) Metabolites of cerebellar neurons and hippocampal neurons play opposite roles in pathogenesis of Alzheimer’s disease. PLoS One 4:e5530

    Article  PubMed  Google Scholar 

  12. Echeverria V, Cuello AC (2002) Intracellular A-beta amyloid, a sign for worse things to come? Mol Neurobiol 26:299–316

    Article  CAS  PubMed  Google Scholar 

  13. Eckman EA, Eckman CB (2005) Aβ-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 33:1101–1105

    Article  CAS  PubMed  Google Scholar 

  14. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Aβ 42 fibrils. Science 293:1491–1495

    Article  CAS  PubMed  Google Scholar 

  15. Gouras GK, Tsai J, Näslund J et al (2000) Intraneuronal Aβ42 accumulation in human brain. Am J Pathol 156:15–20

    CAS  PubMed  Google Scholar 

  16. Gravina SA, Ho L, Eckman CB et al (1995) Amyloid β protein (Aβ) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42(43). J Biol Chem 270:7013–7016

    Article  CAS  PubMed  Google Scholar 

  17. Ha C, Park CB (2006) Ex situ atomic force microscopy analysis of β-amyloid self-assembly and deposition on a synthetic template. Langmuir 22:6977–6985

    Article  CAS  PubMed  Google Scholar 

  18. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  19. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–36

    Article  CAS  PubMed  Google Scholar 

  20. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  CAS  PubMed  Google Scholar 

  21. Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164:975–985

    CAS  PubMed  Google Scholar 

  22. Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135:309–319

    CAS  PubMed  Google Scholar 

  23. Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    Article  CAS  PubMed  Google Scholar 

  24. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  CAS  PubMed  Google Scholar 

  25. Lewis J, Dickson DW, Lin WL et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  26. Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    CAS  PubMed  Google Scholar 

  27. Mori C, Spooner ET, Wisniewsk KE et al (2002) Intraneuronal Aβ42 accumulation in Down syndrome brain. Amyloid 9:88–102

    CAS  PubMed  Google Scholar 

  28. Näslund J, Haroutunian V, Mohs R et al (2000) Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  PubMed  Google Scholar 

  29. Nordstedt C, Näslund J, Tjernberg LO, Karlstrom AR, Thyberg J, Terenius L (1994) The Alzheimer Aβ peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem 269:30773–30776

    CAS  PubMed  Google Scholar 

  30. Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

    Article  CAS  PubMed  Google Scholar 

  31. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  32. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    Article  CAS  PubMed  Google Scholar 

  33. Sengupta P, Garai K, Sahoo B, Shi Y, Callaway DJ, Maiti S (2003) The amyloid β peptide (Aβ1-40) is thermodynamically soluble at physiological concentrations. Biochemistry 42:10506–10513

    Article  CAS  PubMed  Google Scholar 

  34. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  PubMed  Google Scholar 

  35. Thal DR, Griffin WS, Braak H (2008) Parenchymal and vascular Aβ-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. J Cell Mol Med 12:1848–1862

    CAS  PubMed  Google Scholar 

  36. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  37. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    CAS  PubMed  Google Scholar 

  38. Verdile G, Gnjec A, Miklossy J et al (2004) Protein markers for Alzheimer disease in the frontal cortex and cerebellum. Neurology 63:1385–1392

    CAS  PubMed  Google Scholar 

  39. Wang HY, D’Andrea MR, Nagele RG (2002) Cerebellar diffuse amyloid plaques are derived from dendritic Aβ42 accumulations in Purkinje cells. Neurobiol Aging 23:213–223

    Article  CAS  PubMed  Google Scholar 

  40. Welander H, Frånberg J, Graff C, Sundstrom E, Winblad B, Tjernberg LO (2009) Aβ43 is more frequent than Aβ40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem 110:697–706

    Article  CAS  PubMed  Google Scholar 

  41. Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64(Suppl 9):7–10

    PubMed  Google Scholar 

  42. Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496

    Article  PubMed  Google Scholar 

  43. Wirths O, Multhaup G, Czech C et al (2001) Intraneuronal Aβ accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  CAS  PubMed  Google Scholar 

  44. Wood SJ, Maleeff B, Hart T, Wetzel R (1996) Physical, morphological and functional differences between ph 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ. J Mol Biol 256:870–877

    Article  CAS  PubMed  Google Scholar 

  45. Yasojima K, Akiyama H, McGeer EG, McGeer PL (2001) Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci Lett 297:97–100

    Article  CAS  PubMed  Google Scholar 

  46. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jan Näslund for kind gift of anti Aβ42 and Aβ40 antibody. This study was supported by Dainippon Sumitomo Pharma Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Bogdanovic, N., Volkmann, I. et al. Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Aβ42 and Alzheimer’s disease neuropathology. Acta Neuropathol 119, 543–554 (2010). https://doi.org/10.1007/s00401-010-0661-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0661-6

Keywords

Navigation