Skip to main content
Log in

Expression pattern of apoptosis-related markers in Huntington’s disease

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Inappropriate apoptosis has been implicated in the mechanism of neuronal death in Huntington’s disease (HD). In this study, we report the expression of apoptotic markers in HD caudate nucleus (grades 1–4) and compare this with controls without neurological disease. Terminal transferase-mediated biotinylated-UTP nick end-labeling (TUNEL)-positive cells were detected in both control and HD brains. However, typical apoptotic cells were present only in HD, especially in grade 3 and 4 specimens. Expression of the pro-apoptotic protein Bax was increased in HD brains compared to controls, demonstrating a cytoplasmic expression pattern in predominantly shrunken and dark neurons, which were most frequently seen in grades 2 and 3. Control brains displayed weak perinuclear expression of the anti-apoptotic protein Bcl-2, whereas in HD brains Bcl-2 immunoreactivity was markedly enhanced, especially in severely affected grade 4 brains, and was observed in both healthy neurons and dark neurons. Caspase-3, an executioner protease, was only found in four HD brains of different grades and was not expressed in controls. A strong neuronal and glial expression of poly(ADP-ribose) polymerase (PARP)-immunoreactivity was observed in HD brains. These data strongly suggest the involvement of apoptosis in HD. The exact apoptotic pathway occurring in HD neurodegeneration remains yet unclear. However, the presence of late apoptotic events, such as enhanced PARP expression and many TUNEL-positive cells accompanied with weak caspase-3 immunoreactivity in severely affected HD brains, suggests that caspase-mediated neuronal death only plays a minor role in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashe P, Berry M (2003) Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry 27:199–214

    Google Scholar 

  2. Brouillet E, Conde F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    Article  CAS  PubMed  Google Scholar 

  3. Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64

    CAS  PubMed  Google Scholar 

  4. Chen M, Ona V, Li M, Ferrante R, Fink K, Zhu S, Bian J, Guo L, Farrell L, Hersch S, Hobbs W, Vonsattel J, Cha J, Friedlander R (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Google Scholar 

  5. Cookson M, Ince P, Usher P, Shaw P (1999) Poly(ADP-ribose) polymerase is found in both the nucleus and cytoplasm of human CNS neurons. Brain Res 834:182–185

    Article  CAS  PubMed  Google Scholar 

  6. Cotman, C, Anderson, A (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 10:19–45

    CAS  PubMed  Google Scholar 

  7. Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057

    CAS  PubMed  Google Scholar 

  8. Ferrer I, Planas A (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    PubMed  Google Scholar 

  9. Ferrer I, Lopez E, Blanco R, Rivera R, Ballabriga J, Pozas E, Marti E (1998) Bcl-2, Bax, and Bcl-x expression in the CA1 area of the hippocampus following transient forebrain ischemia in the adult gerbil. Exp Brain Res 121:167–173

    Article  CAS  PubMed  Google Scholar 

  10. Goldberg Y, Nicholson D, Rasper D, Kalchman M, Koide H, Graham R, Bromm M, Kazemi-Esfarjani P, Thornberry N, Vaillancourt J, Hayden M (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449

    Google Scholar 

  11. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    Article  CAS  PubMed  Google Scholar 

  12. Hara A, Hirose Y, Wang A, Yoshimi N, Tanaka T, Mori H (1996) Localization of Bax and Bcl-2 proteins, regulators of programmed cell death, in the human central nervous system. Virchows Arch 429:249–253

    Article  CAS  PubMed  Google Scholar 

  13. Hickey M, Chesselet M (2003) Apoptosis in Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:255–265

    Article  CAS  PubMed  Google Scholar 

  14. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  PubMed  Google Scholar 

  15. Huppertz B, Frank H, Kaufmann P (1999) The apoptosis cascade-morphological and immunohistochemical methods for its visualization. Anat Embryol (Berl) 200:1–18

    Google Scholar 

  16. Isenmann S, Stoll G, Schroeter M, Krajewski S, Reed J, Bahr M (1998) Differential regulation of Bax, Bcl-2, and Bcl-X proteins in focal cortical ischemia in the rat. Brain Pathol 8:49–62

    CAS  PubMed  Google Scholar 

  17. Kaneda K, Kashii S, Kurosawa T, Kaneko S, Akaike A, Honda Y, Minami M, Satoh M (1999) Apoptotic DNA fragmentation and upregulation of Bax induced by transient ischemia of the rat retina. Brain Res 815:11–20

    Article  CAS  PubMed  Google Scholar 

  18. Kerr JF, Wyllie AH, Curie AR (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  19. Kiechle T, Dedeoglu A, Kubilus J, Kowall NW, Beal MF, Friedlander R, Hersch SM, Ferrante RJ (2002) Cytochrome C and caspase-9 expression in Huntington’s disease. Neuromolecular Med 1:183–195

    Article  CAS  PubMed  Google Scholar 

  20. Kim S, Henkel J, Beers D, Sengun I, Simpson E, Goodman J, Engelhardt J, Siklos L, Appel S (2003) PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol 62:88–103

    CAS  PubMed  Google Scholar 

  21. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang H, Reed J (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336

    CAS  PubMed  Google Scholar 

  22. Li M, Ona VO, Chen M, Kaul M, Tenneti L, Zhang X, Stieg PE, Lipton SA, Friedlander RM (2000) Functional role and therapeutic implications of neuronal caspase-1 and - 3 in a mouse model of traumatic spinal cord injury. Neuroscience 99:333–342

    Google Scholar 

  23. Love S (2003) Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry 27:267–282

    Google Scholar 

  24. Love S, Barber R, Wilcock G (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain 122:247–253

    Article  PubMed  Google Scholar 

  25. MacGibbon G, Lawlor P, Sirimanne E, Walton M, Connor B, Young D, Williams C, Gluckman P, Faull R, Hughes P, Dragunow M (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750:223–234

    Article  CAS  PubMed  Google Scholar 

  26. Mandir A, Przedborski S, Jackson-Lewis V, Wang Z, Simbulan-Rosenthal C, Smulson M, Hoffman B, Guastella D, Dawson V, Dawson T (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci USA 96:5774–5779

    Article  CAS  PubMed  Google Scholar 

  27. Merry D, Korsmeyer S (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  CAS  PubMed  Google Scholar 

  28. Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996) Bcl-2 protein is increased in the brain from parkinsonian patients. Neurosci Lett 215:137–139

    Google Scholar 

  29. Nakasu S, Nakajima M, Nakazawa T, Nakasu Y, Handa J (1998) Alteration of bcl-2 and bax expression in embolized meningiomas. Brain Tumor Pathol 15:13–17

    CAS  PubMed  Google Scholar 

  30. Ona V, Li M, Vonsattel J, Andrews L, Khan S, Chung W, Frey A, Menon A, Li X, Stieg P, Yuan J, Penney J, Young A, Cha J, Friedlander R (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267

    Article  CAS  PubMed  Google Scholar 

  31. Pasinelli P, Houseweart M, Brown RJ, Cleveland D (2000) Caspase-1 and −3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:13901–13096

    Article  CAS  PubMed  Google Scholar 

  32. Petersen A, Mani K, Brundin P (1999) Recent advances on the pathogenesis of Huntington’s disease. Exp Neurol 157:1–18

    Google Scholar 

  33. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15:3775–3787

    Google Scholar 

  34. Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633

    Article  CAS  PubMed  Google Scholar 

  35. Satou T, Cummings B, Cotman C (1995) Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res 697:35–43

    Article  CAS  PubMed  Google Scholar 

  36. Sugimoto T, Xiao C, Ichikawa H (1998) Neonatal primary neuronal death induced by capsaicin and axotomy involves an apoptotic mechanism. Brain Res 807:147–154

    Article  CAS  PubMed  Google Scholar 

  37. Tatton W, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53:S61–70

    Article  CAS  PubMed  Google Scholar 

  38. Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133:265–272

    Article  CAS  PubMed  Google Scholar 

  39. Uysal H, Cevik I, Soylemezoglu F, Elibol B, Ozdemir Y, Evrenkaya T, Saygi S, Dalkara T (2003) Is the cell death in mesial temporal sclerosis apoptotic? Epilepsia 44:778–784

    Article  PubMed  Google Scholar 

  40. Vis JC, Verbeek MM, Waal RM de, Donkelaar HJ ten, Kremer B (2001) The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Neuropathol Appl Neurobiol 27:68–76

    Article  CAS  PubMed  Google Scholar 

  41. Vogel P, Dux E, Wiessner C (1997) Evidence of apoptosis in primary neuronal cultures after heat shock. Brain Res 764:205–213

    Article  CAS  PubMed  Google Scholar 

  42. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP, Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Neurology of Leiden University Medical Center, Leiden, the Netherlands, for donation of brain tissue used in this study. This study was supported by a grant from the Netherlands Organization for Scientific Research (NWO-MW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Vis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vis, J.C., Schipper, E., de Boer-van Huizen, R.T. et al. Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol 109, 321–328 (2005). https://doi.org/10.1007/s00401-004-0957-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0957-5

Keywords

Navigation