Skip to main content
Log in

The muscle-specific chaperone protein melusin is a potent cardioprotective agent

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Melusin is a protein selectively expressed in skeletal muscles and heart and highly conserved in vertebrates. Melusin is part of the heat shock protein 90 machinery and acts as molecular chaperone in controlling cardiomyocyte survival and adaptive hypertrophy signaling pathways in the heart in response to different stress conditions. The role of melusin has been extensively investigated in genetically modified mice over the past years disclosing an important cardioprotective function of this unique muscle-specific chaperone protein in different pathological conditions. This review highlights the findings in animal models and the molecular mechanisms underlying melusin cardioprotective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aro J, Tokola H, Ronkainen VP, Koivisto E, Tenhunen O, Ilves M, Szokodi I, Ruskoaho H, Rysa J (2013) Regulation of cardiac melusin gene expression by hypertrophic stimuli in the rat. Acta Physiol (Oxf) 207:470–484. doi:10.1111/apha.12044

    Article  CAS  Google Scholar 

  2. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75. doi:10.1038/nm805

    Article  CAS  PubMed  Google Scholar 

  3. Brancaccio M, Guazzone S, Menini N, Sibona E, Hirsch E, De Andrea M, Rocchi M, Altruda F, Tarone G, Silengo L (1999) Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. J Biol Chem 274:29282–29288. doi:10.1074/jbc.274.41.29282

    Article  CAS  PubMed  Google Scholar 

  4. Brokat S, Thomas J, Herda LR, Knosalla C, Pregla R, Brancaccio M, Accornero F, Tarone G, Hetzer R, Regitz-Zagrosek V (2007) Altered melusin expression in the hearts of aortic stenosis patients. Eur J Heart Fail 9:568–573. doi:10.1016/j.ejheart.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  5. Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107. doi:10.1379/1466-1268(2003)008<0105:WIAC>2.0.CO;2

    Article  PubMed Central  PubMed  Google Scholar 

  6. Carnevale D, Cifelli G, Mascio G, Madonna M, Sbroggio M, Perrino C, Persico MG, Frati G, Lembo G (2011) Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodeling during cardiac pressure overload. Circulation 124:1337–1350. doi:10.1161/CIRCULATIONAHA.111.050500

    Article  CAS  PubMed  Google Scholar 

  7. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6:1574–1583. doi:10.1038/sj.gt.3300994

    Article  CAS  PubMed  Google Scholar 

  8. De Acetis M, Notte A, Accornero F, Selvetella G, Brancaccio M, Vecchione C, Sbroggio M, Collino F, Pacchioni B, Lanfranchi G, Aretini A, Ferretti R, Maffei A, Altruda F, Silengo L, Tarone G, Lembo G (2005) Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 96:1087–1094. doi:10.1161/01.RES.0000168028.36081.e0

    Article  PubMed  Google Scholar 

  9. Donker DW, Maessen JG, Verheyen F, Ramaekers FC, Spatjens RL, Kuijpers H, Ramakers C, Schiffers PM, Vos MA, Crijns HJ, Volders PG (2007) Impact of acute and enduring volume overload on mechanotransduction and cytoskeletal integrity of canine left ventricular myocardium. Am J Physiol Heart Circ Physiol 292:H2324–H2332. doi:10.1152/ajpheart.00392.2006

    Article  CAS  PubMed  Google Scholar 

  10. Ferretti R, Sbroggio M, Di Savino A, Fusella F, Bertero A, Michowski W, Tarone G, Brancaccio M (2011) Morgana and melusin: two fairies chaperoning signal transduction. Cell Cycle 10:3678–3683. doi:10.4161/cc.10.21.18202

    Article  CAS  PubMed  Google Scholar 

  11. Filipek A, Michowski W, Kuznicki J (2008) Involvement of S100A6 (calcyclin) and its binding partners in intracellular signaling pathways. Adv Enzyme Regul 48:225–239. doi:10.1016/j.advenzreg.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277:10346–10353. doi:10.1074/jbc.M106736200

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167 (S0014579302033215)

    Article  CAS  PubMed  Google Scholar 

  14. Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592. doi:10.1016/j.biocel.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  15. Gaspar N, Sharp SY, Eccles SA, Gowan S, Popov S, Jones C, Pearson A, Vassal G, Workman P (2010) Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Mol Cancer Ther 9:1219–1233. doi:10.1158/1535-7163.MCT-09-0683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail 2:84–92. doi:10.1016/j.jchf.2013.09.008

    Article  PubMed  Google Scholar 

  17. Gu R, Zheng D, Bai J, Xie J, Dai Q, Xu B (2012) Altered melusin pathways involved in cardiac remodeling following acute myocardial infarction. Cardiovasc Pathol 21:105–111. doi:10.1016/j.carpath.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415. doi:10.1016/j.bbabio.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  19. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581. doi:10.1038/nsmb.1591

    Article  CAS  PubMed  Google Scholar 

  20. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodeling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  21. Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS (2013) Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem 288:215–222. doi:10.1074/jbc.M112.398636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61:4003–4009

    CAS  PubMed  Google Scholar 

  23. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313. doi:10.1161/CIRCULATIONAHA.111.022889

    Article  CAS  PubMed  Google Scholar 

  24. Lee EY, Lee ZH, Song YW (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8:379–383. doi:10.1016/j.autrev.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  25. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. doi:10.1152/physrev.00024.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328. doi:10.1016/j.cardiores.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  27. Palumbo V, Segat L, Padovan L, Amoroso A, Trimarco B, Izzo R, Lembo G, Regitz-Zagrosek V, Knoll R, Brancaccio M, Tarone G, Crovella S (2009) Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients. BMC Med Genet 10:140. doi:10.1186/1471-2350-10-140

    Article  PubMed Central  PubMed  Google Scholar 

  28. Penna C, Brancaccio M, Tullio F, Rubinetto C, Perrelli MG, Angotti C, Pagliaro P, Tarone G (2014) Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury. Basic Res Cardiol 109:418. doi:10.1007/s00395-014-0418-9

    Article  PubMed  Google Scholar 

  29. Pfister R, Acksteiner C, Baumgarth J, Burst V, Geissler HJ, Margulies KB, Houser S, Bloch W, Flesch M (2007) Loss of beta1D-integrin function in human ischemic cardiomyopathy. Basic Res Cardiol 102:257–264. doi:10.1007/s00395-006-0640-1

    Article  CAS  PubMed  Google Scholar 

  30. Ponnazhagan S, Erikson D, Kearns WG, Zhou SZ, Nahreini P, Wang XS, Srivastava A (1997) Lack of site-specific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum Gene Ther 8:275–284. doi:10.1089/hum.1997.8.3-275

    Article  CAS  PubMed  Google Scholar 

  31. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360. doi:10.1210/edrv.18.3.0303

    CAS  PubMed  Google Scholar 

  32. Ruppert V, Meyer T, Richter A, Maisch B, Pankuweit S (2013) Identification of a missense mutation in the melusin-encoding ITGB1BP2 gene in a patient with dilated cardiomyopathy. Gene 512:206–210. doi:10.1016/j.gene.2012.10.055

    Article  CAS  PubMed  Google Scholar 

  33. Sbroggio M, Bertero A, Velasco S, Fusella F, De Blasio E, Bahou WF, Silengo L, Turco E, Brancaccio M, Tarone G (2011) ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1. J Cell Sci 124:3515–3524. doi:10.1242/jcs.091140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sbroggio M, Carnevale D, Bertero A, Cifelli G, De Blasio E, Mascio G, Hirsch E, Bahou WF, Turco E, Silengo L, Brancaccio M, Lembo G, Tarone G (2011) IQGAP1 regulates ERK1/2 and AKT signaling in the heart and sustains functional remodeling upon pressure overload. Cardiovasc Res 91:456–464. doi:10.1093/cvr/cvr103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sbroggiò M, Ferretti R, Percivalle E, Gutkowska M, Zylicz A, Michowski W, Kuznicki J, Accornero F, Pacchioni B, Lanfranchi G, Hamm J, Turco E, Silengo L, Tarone G, Brancaccio M (2008) The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett 582:1788–1794. doi:10.1016/j.febslet.2008.04.058

    Article  PubMed  Google Scholar 

  36. Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366. doi:10.1016/S0092-8674(00)81522-6

    Article  CAS  PubMed  Google Scholar 

  37. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528. doi:10.1038/nrm2918

    Article  CAS  PubMed  Google Scholar 

  38. Tarone G, Brancaccio M (2014) Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res 102:346–361. doi:10.1093/cvr/cvu049

    Article  CAS  PubMed  Google Scholar 

  39. Tarone G, Sbroggio M, Brancaccio M (2013) Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 70:4047–4054. doi:10.1007/s00018-013-1321-5

    Article  CAS  PubMed  Google Scholar 

  40. Unsold B, Kaul A, Sbroggio M, Schubert C, Regitz-Zagrosek V, Brancaccio M, Damilano F, Hirsch E, Van Bilsen M, Munts C, Sipido K, Bito V, Detre E, Wagner NM, Schafer K, Seidler T, Vogt J, Neef S, Bleckmann A, Maier LS, Balligand JL, Bouzin C, Ventura-Clapier R, Garnier A, Eschenhagen T, El-Armouche A, Knoll R, Tarone G, Hasenfuss G (2014) Melusin protects from cardiac rupture and improves functional remodeling after myocardial infarction. Cardiovasc Res 101:97–107. doi:10.1093/cvr/cvt235

    Article  PubMed  Google Scholar 

  41. van der Straten A, Rommel C, Dickson B, Hafen E (1997) The heat shock protein 83 (Hsp83) is required for Raf-mediated signaling in Drosophila. EMBO J 16:1961–1969. doi:10.1093/emboj/16.8.1961

    Article  PubMed Central  PubMed  Google Scholar 

  42. von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 8:1011–1016. doi:10.1038/ncb1465

    Article  Google Scholar 

  43. Waardenberg AJ, Bernardo BC, Ng DC, Shepherd PR, Cemerlang N, Sbroggio M, Wells CA, Dalrymple BP, Brancaccio M, Lin RC, McMullen JR (2011) Phosphoinositide 3-kinase (PI3 K(p110alpha)) directly regulates key components of the Z-disc and cardiac structure. J Biol Chem 286:30837–30846. doi:10.1074/jbc.M111.271684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Willis MS, Patterson C (2013) Proteotoxicity and cardiac dysfunction–Alzheimer’s disease of the heart? N Engl J Med 368:455–464. doi:10.1056/NEJMra1106180

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci USA 90:7074–7078. doi:10.1073/pnas.90.15.7074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39:269–281. doi:10.1016/j.molcel.2010.05.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Telethon grant GGP12047 to GT, MIUR Prin 2010RNXM9C_002 to GT; MIUR PRIN 2010J8RYS7_007 to MB.

Conflict of interest

Mara Brancaccio and Guido Tarone are cofounders and scientific consultants for Target Heart Biotec, a company that develops melusin recombinant protein as a drug to counteract cardiomyopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Tarone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarone, G., Brancaccio, M. The muscle-specific chaperone protein melusin is a potent cardioprotective agent. Basic Res Cardiol 110, 10 (2015). https://doi.org/10.1007/s00395-015-0466-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0466-9

Keywords

Navigation